Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/P-adically_closed_field> ?p ?o }
Showing triples 1 to 42 of
42
with 100 triples per page.
- P-adically_closed_field abstract "In mathematics, a p-adically closed field is a field that enjoys a closure property that is a close analogue for p-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.".
- P-adically_closed_field wikiPageExternalLink p110010.htm.
- P-adically_closed_field wikiPageID "21380912".
- P-adically_closed_field wikiPageLength "6940".
- P-adically_closed_field wikiPageOutDegree "24".
- P-adically_closed_field wikiPageRevisionID "574335274".
- P-adically_closed_field wikiPageWikiLink Category:Field_theory.
- P-adically_closed_field wikiPageWikiLink Complete_theory.
- P-adically_closed_field wikiPageWikiLink Discrete_valuation_ring.
- P-adically_closed_field wikiPageWikiLink Elementary_equivalence.
- P-adically_closed_field wikiPageWikiLink Field_(mathematics).
- P-adically_closed_field wikiPageWikiLink Field_extension.
- P-adically_closed_field wikiPageWikiLink Gaussian_rational.
- P-adically_closed_field wikiPageWikiLink Henselian_ring.
- P-adically_closed_field wikiPageWikiLink James_Ax.
- P-adically_closed_field wikiPageWikiLink Lexicographical_order.
- P-adically_closed_field wikiPageWikiLink Mathematics.
- P-adically_closed_field wikiPageWikiLink Maximal_ideal.
- P-adically_closed_field wikiPageWikiLink Model_complete_theory.
- P-adically_closed_field wikiPageWikiLink P-adic_number.
- P-adically_closed_field wikiPageWikiLink P-adic_order.
- P-adically_closed_field wikiPageWikiLink Quantifier_elimination.
- P-adically_closed_field wikiPageWikiLink Rational_number.
- P-adically_closed_field wikiPageWikiLink Real_closed_field.
- P-adically_closed_field wikiPageWikiLink Real_number.
- P-adically_closed_field wikiPageWikiLink Residue_field.
- P-adically_closed_field wikiPageWikiLink Simon_B._Kochen.
- P-adically_closed_field wikiPageWikiLink Springer_Science+Business_Media.
- P-adically_closed_field wikiPageWikiLink Valuation_(algebra).
- P-adically_closed_field wikiPageWikiLinkText "p-adic closure".
- P-adically_closed_field wikiPageUsesTemplate Template:Cite_conference.
- P-adically_closed_field wikiPageUsesTemplate Template:Cite_journal.
- P-adically_closed_field wikiPageUsesTemplate Template:Cite_web.
- P-adically_closed_field subject Category:Field_theory.
- P-adically_closed_field hypernym Field.
- P-adically_closed_field comment "In mathematics, a p-adically closed field is a field that enjoys a closure property that is a close analogue for p-adic fields to what real closure is to the real field. They were introduced by James Ax and Simon B. Kochen in 1965.".
- P-adically_closed_field label "P-adically closed field".
- P-adically_closed_field sameAs Q7116921.
- P-adically_closed_field sameAs m.05f80c2.
- P-adically_closed_field sameAs Q7116921.
- P-adically_closed_field wasDerivedFrom P-adically_closed_field?oldid=574335274.
- P-adically_closed_field isPrimaryTopicOf P-adically_closed_field.