Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Modular_product_of_graphs> ?p ?o }
Showing triples 1 to 33 of
33
with 100 triples per page.
- Modular_product_of_graphs abstract "In graph theory, the modular product of graphs G and H is a graph such that the vertex set of the modular product of G and H is the cartesian product V(G) × V(H); and any two vertices (u, v) and (u' , v' ) are adjacent in the modular product of G and H if and only if either u is adjacent with u' and v is adjacent with v' , or u is not adjacent with u' and v is not adjacent with v' .Cliques in the modular product graph correspond to isomorphisms of induced subgraphs of G and H. Therefore, the modular product graph can be used to reduce problems of induced subgraph isomorphism to problems of finding cliques in graphs. Specifically, the largest graph that is an induced subgraph of both G and H corresponds to the maximum clique in their modular product. Although the problems of finding largest common induced subgraphs and of finding maximum cliques are both NP-complete, this reduction allows clique-finding algorithms to be applied to the common subgraph problem.".
- Modular_product_of_graphs thumbnail Modular_product.png?width=300.
- Modular_product_of_graphs wikiPageID "13518199".
- Modular_product_of_graphs wikiPageLength "2232".
- Modular_product_of_graphs wikiPageOutDegree "10".
- Modular_product_of_graphs wikiPageRevisionID "670639079".
- Modular_product_of_graphs wikiPageWikiLink Cartesian_product.
- Modular_product_of_graphs wikiPageWikiLink Category:Graph_products.
- Modular_product_of_graphs wikiPageWikiLink Clique_(graph_theory).
- Modular_product_of_graphs wikiPageWikiLink File:Modular_product.png.
- Modular_product_of_graphs wikiPageWikiLink Graph_isomorphism.
- Modular_product_of_graphs wikiPageWikiLink Graph_theory.
- Modular_product_of_graphs wikiPageWikiLink Induced_subgraph.
- Modular_product_of_graphs wikiPageWikiLink NP-completeness.
- Modular_product_of_graphs wikiPageWikiLinkText "Modular product".
- Modular_product_of_graphs wikiPageWikiLinkText "Modular_product_of_graphs".
- Modular_product_of_graphs wikiPageWikiLinkText "modular product graph".
- Modular_product_of_graphs wikiPageWikiLinkText "modular product of graphs".
- Modular_product_of_graphs wikiPageUsesTemplate Template:Citation.
- Modular_product_of_graphs wikiPageUsesTemplate Template:Combin-stub.
- Modular_product_of_graphs subject Category:Graph_products.
- Modular_product_of_graphs hypernym Graph.
- Modular_product_of_graphs type Software.
- Modular_product_of_graphs type Combinatoric.
- Modular_product_of_graphs type Product.
- Modular_product_of_graphs comment "In graph theory, the modular product of graphs G and H is a graph such that the vertex set of the modular product of G and H is the cartesian product V(G) × V(H); and any two vertices (u, v) and (u' , v' ) are adjacent in the modular product of G and H if and only if either u is adjacent with u' and v is adjacent with v' , or u is not adjacent with u' and v is not adjacent with v' .Cliques in the modular product graph correspond to isomorphisms of induced subgraphs of G and H.".
- Modular_product_of_graphs label "Modular product of graphs".
- Modular_product_of_graphs sameAs Q6889729.
- Modular_product_of_graphs sameAs m.03c7ycq.
- Modular_product_of_graphs sameAs Q6889729.
- Modular_product_of_graphs wasDerivedFrom Modular_product_of_graphs?oldid=670639079.
- Modular_product_of_graphs depiction Modular_product.png.
- Modular_product_of_graphs isPrimaryTopicOf Modular_product_of_graphs.