Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Minakshisundaram–Pleijel_zeta_function> ?p ?o }
Showing triples 1 to 52 of
52
with 100 triples per page.
- Minakshisundaram–Pleijel_zeta_function abstract "The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introducedby Subbaramiah Minakshisundaram and Åke Pleijel (1949). The case of a compact region of the plane was treated earlier by Carleman (1935).".
- Minakshisundaram–Pleijel_zeta_function wikiPageExternalLink books?id=ZdHGSgAACAAJ.
- Minakshisundaram–Pleijel_zeta_function wikiPageExternalLink CJM-1949-021-5.
- Minakshisundaram–Pleijel_zeta_function wikiPageID "4744575".
- Minakshisundaram–Pleijel_zeta_function wikiPageLength "5704".
- Minakshisundaram–Pleijel_zeta_function wikiPageOutDegree "17".
- Minakshisundaram–Pleijel_zeta_function wikiPageRevisionID "701596999".
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Canadian_Journal_of_Mathematics.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Category:Differential_geometry.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Category:Harmonic_analysis.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Category:Zeta_and_L-functions.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Euler_characteristic.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Gauss–Bonnet_theorem.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Hearing_the_shape_of_a_drum.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Heat_kernel.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Laplace–Beltrami_operator.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Mellin_transform.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Ricci_curvature.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Riemann_zeta_function.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Riemannian_manifold.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Scalar_curvature.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Springer_Science+Business_Media.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Wiener–Ikehara_theorem.
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLink Zeta_function_(operator).
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLinkText "Minakshisundaram–Pleijel zeta function".
- Minakshisundaram–Pleijel_zeta_function wikiPageWikiLinkText "zeta functional determinant".
- Minakshisundaram–Pleijel_zeta_function author1Link "Subbaramiah Minakshisundaram".
- Minakshisundaram–Pleijel_zeta_function author2Link "Åke Pleijel".
- Minakshisundaram–Pleijel_zeta_function first "Subbaramiah".
- Minakshisundaram–Pleijel_zeta_function first "Åke".
- Minakshisundaram–Pleijel_zeta_function last "Minakshisundaram".
- Minakshisundaram–Pleijel_zeta_function last "Pleijel".
- Minakshisundaram–Pleijel_zeta_function wikiPageUsesTemplate Template:Citation.
- Minakshisundaram–Pleijel_zeta_function wikiPageUsesTemplate Template:Harvs.
- Minakshisundaram–Pleijel_zeta_function wikiPageUsesTemplate Template:Harvtxt.
- Minakshisundaram–Pleijel_zeta_function year "1949".
- Minakshisundaram–Pleijel_zeta_function subject Category:Differential_geometry.
- Minakshisundaram–Pleijel_zeta_function subject Category:Harmonic_analysis.
- Minakshisundaram–Pleijel_zeta_function subject Category:Zeta_and_L-functions.
- Minakshisundaram–Pleijel_zeta_function hypernym Function.
- Minakshisundaram–Pleijel_zeta_function type Disease.
- Minakshisundaram–Pleijel_zeta_function type Function.
- Minakshisundaram–Pleijel_zeta_function type Physic.
- Minakshisundaram–Pleijel_zeta_function type Redirect.
- Minakshisundaram–Pleijel_zeta_function comment "The Minakshisundaram–Pleijel zeta function is a zeta function encoding the eigenvalues of the Laplacian of a compact Riemannian manifold. It was introducedby Subbaramiah Minakshisundaram and Åke Pleijel (1949). The case of a compact region of the plane was treated earlier by Carleman (1935).".
- Minakshisundaram–Pleijel_zeta_function label "Minakshisundaram–Pleijel zeta function".
- Minakshisundaram–Pleijel_zeta_function sameAs Q11342341.
- Minakshisundaram–Pleijel_zeta_function sameAs ミナクシサンドラム–プレイジェルゼータ函数.
- Minakshisundaram–Pleijel_zeta_function sameAs m.0cl145.
- Minakshisundaram–Pleijel_zeta_function sameAs Q11342341.
- Minakshisundaram–Pleijel_zeta_function wasDerivedFrom Minakshisundaram–Pleijel_zeta_function?oldid=701596999.
- Minakshisundaram–Pleijel_zeta_function isPrimaryTopicOf Minakshisundaram–Pleijel_zeta_function.