Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Milman–Pettis_theorem> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Milman–Pettis_theorem abstract "In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939). S. Kakutani gave a different proof in 1939, and John R. Ringrose published a shorter proof in 1959.Mahlon M. Day (1941) gave examples of reflexive Banach spaces which are not isomorphic to any uniformly convex space.".
- Milman–Pettis_theorem wikiPageID "9144207".
- Milman–Pettis_theorem wikiPageLength "1396".
- Milman–Pettis_theorem wikiPageOutDegree "9".
- Milman–Pettis_theorem wikiPageRevisionID "551287885".
- Milman–Pettis_theorem wikiPageWikiLink Banach_space.
- Milman–Pettis_theorem wikiPageWikiLink Billy_James_Pettis.
- Milman–Pettis_theorem wikiPageWikiLink Category:Banach_spaces.
- Milman–Pettis_theorem wikiPageWikiLink Category:Theorems_in_functional_analysis.
- Milman–Pettis_theorem wikiPageWikiLink David_Milman.
- Milman–Pettis_theorem wikiPageWikiLink Mathematics.
- Milman–Pettis_theorem wikiPageWikiLink Reflexive_space.
- Milman–Pettis_theorem wikiPageWikiLink Shizuo_Kakutani.
- Milman–Pettis_theorem wikiPageWikiLink Uniformly_convex_space.
- Milman–Pettis_theorem wikiPageWikiLinkText "Milman–Pettis theorem".
- Milman–Pettis_theorem wikiPageWikiLinkText "Milman–Pettis theorem".
- Milman–Pettis_theorem wikiPageUsesTemplate Template:Cite_journal.
- Milman–Pettis_theorem subject Category:Banach_spaces.
- Milman–Pettis_theorem subject Category:Theorems_in_functional_analysis.
- Milman–Pettis_theorem type Redirect.
- Milman–Pettis_theorem type Space.
- Milman–Pettis_theorem type Theorem.
- Milman–Pettis_theorem comment "In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939). S. Kakutani gave a different proof in 1939, and John R. Ringrose published a shorter proof in 1959.Mahlon M. Day (1941) gave examples of reflexive Banach spaces which are not isomorphic to any uniformly convex space.".
- Milman–Pettis_theorem label "Milman–Pettis theorem".
- Milman–Pettis_theorem sameAs Q6860180.
- Milman–Pettis_theorem sameAs m.027z8_r.
- Milman–Pettis_theorem sameAs Q6860180.
- Milman–Pettis_theorem wasDerivedFrom Milman–Pettis_theorem?oldid=551287885.
- Milman–Pettis_theorem isPrimaryTopicOf Milman–Pettis_theorem.