Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Mehler–Heine_formula> ?p ?o }
Showing triples 1 to 33 of
33
with 100 triples per page.
- Mehler–Heine_formula abstract "In mathematics, the Mehler–Heine formula introduced by Mehler (1868) and Heine (1861) describes the asymptotic behavior of the Legendre polynomials as the index tends to infinity, near the edges of the support of the weight. There are generalizations to other classical orthogonal polynomials, which are also called the Mehler–Heine formula. The formula complements the Darboux formulae which describe the asymptotics in the interior and outside the support.".
- Mehler–Heine_formula wikiPageExternalLink books?id=D79hEMl2GM0C.
- Mehler–Heine_formula wikiPageExternalLink books?id=3hcW8HBh7gsC.
- Mehler–Heine_formula wikiPageID "32798823".
- Mehler–Heine_formula wikiPageLength "2172".
- Mehler–Heine_formula wikiPageOutDegree "7".
- Mehler–Heine_formula wikiPageRevisionID "573294271".
- Mehler–Heine_formula wikiPageWikiLink Bessel_function.
- Mehler–Heine_formula wikiPageWikiLink Category:Orthogonal_polynomials.
- Mehler–Heine_formula wikiPageWikiLink Classical_orthogonal_polynomials.
- Mehler–Heine_formula wikiPageWikiLink Complex_plane.
- Mehler–Heine_formula wikiPageWikiLink Domain_(mathematical_analysis).
- Mehler–Heine_formula wikiPageWikiLink Jacobi_polynomials.
- Mehler–Heine_formula wikiPageWikiLink Legendre_polynomials.
- Mehler–Heine_formula wikiPageWikiLinkText "Mehler–Heine formula".
- Mehler–Heine_formula wikiPageWikiLinkText "Mehler–Heine formula".
- Mehler–Heine_formula b "n".
- Mehler–Heine_formula p "α,β".
- Mehler–Heine_formula wikiPageUsesTemplate Template:Citation.
- Mehler–Heine_formula wikiPageUsesTemplate Template:Harv.
- Mehler–Heine_formula wikiPageUsesTemplate Template:Harvs.
- Mehler–Heine_formula wikiPageUsesTemplate Template:Su.
- Mehler–Heine_formula subject Category:Orthogonal_polynomials.
- Mehler–Heine_formula type Function.
- Mehler–Heine_formula type Polynomial.
- Mehler–Heine_formula type Redirect.
- Mehler–Heine_formula comment "In mathematics, the Mehler–Heine formula introduced by Mehler (1868) and Heine (1861) describes the asymptotic behavior of the Legendre polynomials as the index tends to infinity, near the edges of the support of the weight. There are generalizations to other classical orthogonal polynomials, which are also called the Mehler–Heine formula. The formula complements the Darboux formulae which describe the asymptotics in the interior and outside the support.".
- Mehler–Heine_formula label "Mehler–Heine formula".
- Mehler–Heine_formula sameAs Q17098827.
- Mehler–Heine_formula sameAs m.0h3pnd7.
- Mehler–Heine_formula sameAs Q17098827.
- Mehler–Heine_formula wasDerivedFrom Mehler–Heine_formula?oldid=573294271.
- Mehler–Heine_formula isPrimaryTopicOf Mehler–Heine_formula.