Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Mautners_lemma> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Mautners_lemma abstract "In mathematics, Mautner's lemma in representation theory states that if G is a topological group and π a unitary representation of G on a Hilbert space H, then for any x in G, which has conjugates yxy−1converging to the identity element e, for a net of elements y, then any vector v of H invariant under all the π(y) is also invariant under π(x).".
- Mautners_lemma wikiPageID "3018887".
- Mautners_lemma wikiPageLength "818".
- Mautners_lemma wikiPageOutDegree "13".
- Mautners_lemma wikiPageRevisionID "657258591".
- Mautners_lemma wikiPageWikiLink Category:Lemmas.
- Mautners_lemma wikiPageWikiLink Category:Theorems_in_representation_theory.
- Mautners_lemma wikiPageWikiLink Category:Topological_groups.
- Mautners_lemma wikiPageWikiLink Category:Unitary_representation_theory.
- Mautners_lemma wikiPageWikiLink Friederich_Ignaz_Mautner.
- Mautners_lemma wikiPageWikiLink Glossary_of_Riemannian_and_metric_geometry.
- Mautners_lemma wikiPageWikiLink Hilbert_space.
- Mautners_lemma wikiPageWikiLink Identity_element.
- Mautners_lemma wikiPageWikiLink Mathematics.
- Mautners_lemma wikiPageWikiLink Net_(mathematics).
- Mautners_lemma wikiPageWikiLink Representation_theory.
- Mautners_lemma wikiPageWikiLink Topological_group.
- Mautners_lemma wikiPageWikiLink Unitary_representation.
- Mautners_lemma wikiPageWikiLinkText "Mautner's Lemma".
- Mautners_lemma wikiPageWikiLinkText "Mautner's lemma".
- Mautners_lemma wikiPageUsesTemplate Template:Algebra-stub.
- Mautners_lemma subject Category:Lemmas.
- Mautners_lemma subject Category:Theorems_in_representation_theory.
- Mautners_lemma subject Category:Topological_groups.
- Mautners_lemma subject Category:Unitary_representation_theory.
- Mautners_lemma hypernym Group.
- Mautners_lemma type Band.
- Mautners_lemma type Space.
- Mautners_lemma comment "In mathematics, Mautner's lemma in representation theory states that if G is a topological group and π a unitary representation of G on a Hilbert space H, then for any x in G, which has conjugates yxy−1converging to the identity element e, for a net of elements y, then any vector v of H invariant under all the π(y) is also invariant under π(x).".
- Mautners_lemma label "Mautner's lemma".
- Mautners_lemma sameAs Q16919360.
- Mautners_lemma sameAs m.08kx5m.
- Mautners_lemma sameAs Mautners_lemma.
- Mautners_lemma sameAs Q16919360.
- Mautners_lemma wasDerivedFrom Mautners_lemma?oldid=657258591.
- Mautners_lemma isPrimaryTopicOf Mautners_lemma.