Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Matlis_duality> ?p ?o }
Showing triples 1 to 56 of
56
with 100 triples per page.
- Matlis_duality abstract "In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by Matlis (1958).".
- Matlis_duality wikiPageExternalLink books?id=LF6CbQk9uScC.
- Matlis_duality wikiPageExternalLink 1103039896.
- Matlis_duality wikiPageID "38077774".
- Matlis_duality wikiPageLength "3958".
- Matlis_duality wikiPageOutDegree "29".
- Matlis_duality wikiPageRevisionID "676506838".
- Matlis_duality wikiPageWikiLink *-autonomous_category.
- Matlis_duality wikiPageWikiLink Abelian_group.
- Matlis_duality wikiPageWikiLink Adjoint_functors.
- Matlis_duality wikiPageWikiLink Algebra.
- Matlis_duality wikiPageWikiLink Artinian_module.
- Matlis_duality wikiPageWikiLink Cambridge_University_Press.
- Matlis_duality wikiPageWikiLink Category:Commutative_algebra.
- Matlis_duality wikiPageWikiLink Category:Theorems_in_algebra.
- Matlis_duality wikiPageWikiLink Derived_category.
- Matlis_duality wikiPageWikiLink Discrete_valuation_ring.
- Matlis_duality wikiPageWikiLink Duality_(mathematics).
- Matlis_duality wikiPageWikiLink Dualizing_module.
- Matlis_duality wikiPageWikiLink Field_of_fractions.
- Matlis_duality wikiPageWikiLink Finitely_generated_module.
- Matlis_duality wikiPageWikiLink Francis_Sowerby_Macaulay.
- Matlis_duality wikiPageWikiLink Grothendieck_local_duality.
- Matlis_duality wikiPageWikiLink Hom_functor.
- Matlis_duality wikiPageWikiLink Injective_hull.
- Matlis_duality wikiPageWikiLink Local_cohomology.
- Matlis_duality wikiPageWikiLink Local_ring.
- Matlis_duality wikiPageWikiLink Locally_compact_group.
- Matlis_duality wikiPageWikiLink Module_(mathematics).
- Matlis_duality wikiPageWikiLink Noetherian_module.
- Matlis_duality wikiPageWikiLink P-adic_number.
- Matlis_duality wikiPageWikiLink Pacific_Journal_of_Mathematics.
- Matlis_duality wikiPageWikiLink Polynomial_ring.
- Matlis_duality wikiPageWikiLink Pontryagin_duality.
- Matlis_duality wikiPageWikiLink Residue_field.
- Matlis_duality wikiPageWikiLink Topological_vector_space.
- Matlis_duality wikiPageWikiLinkText "Matlis duality".
- Matlis_duality b "R".
- Matlis_duality date "May 2014".
- Matlis_duality p "d".
- Matlis_duality reason "As a subfield? As a module?".
- Matlis_duality wikiPageUsesTemplate Template:Citation.
- Matlis_duality wikiPageUsesTemplate Template:Clarify.
- Matlis_duality wikiPageUsesTemplate Template:Harvs.
- Matlis_duality wikiPageUsesTemplate Template:Reflist.
- Matlis_duality wikiPageUsesTemplate Template:Su.
- Matlis_duality subject Category:Commutative_algebra.
- Matlis_duality subject Category:Theorems_in_algebra.
- Matlis_duality hypernym Duality.
- Matlis_duality comment "In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by Matlis (1958).".
- Matlis_duality label "Matlis duality".
- Matlis_duality sameAs Q6787678.
- Matlis_duality sameAs m.0pcw3fs.
- Matlis_duality sameAs Q6787678.
- Matlis_duality wasDerivedFrom Matlis_duality?oldid=676506838.
- Matlis_duality isPrimaryTopicOf Matlis_duality.