Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Mahler_volume> ?p ?o }
Showing triples 1 to 58 of
58
with 100 triples per page.
- Mahler_volume abstract "In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the spheres and ellipsoids; this is now known as the Blaschke–Santaló inequality. The still-unsolved Mahler conjecture states that the minimum possible Mahler volume is attained by a hypercube.".
- Mahler_volume wikiPageID "21867246".
- Mahler_volume wikiPageLength "5422".
- Mahler_volume wikiPageOutDegree "31".
- Mahler_volume wikiPageRevisionID "555726905".
- Mahler_volume wikiPageWikiLink American_Mathematical_Society.
- Mahler_volume wikiPageWikiLink Category:Convex_geometry.
- Mahler_volume wikiPageWikiLink Category:Geometric_inequalities.
- Mahler_volume wikiPageWikiLink Category:Volume.
- Mahler_volume wikiPageWikiLink Compact_space.
- Mahler_volume wikiPageWikiLink Convex_body.
- Mahler_volume wikiPageWikiLink Convex_geometry.
- Mahler_volume wikiPageWikiLink Cross-polytope.
- Mahler_volume wikiPageWikiLink Cube.
- Mahler_volume wikiPageWikiLink Dimensionless_quantity.
- Mahler_volume wikiPageWikiLink Dual_polyhedron.
- Mahler_volume wikiPageWikiLink Ellipsoid.
- Mahler_volume wikiPageWikiLink Euclidean_space.
- Mahler_volume wikiPageWikiLink Gamma_function.
- Mahler_volume wikiPageWikiLink Hanner_polytope.
- Mahler_volume wikiPageWikiLink Hypercube.
- Mahler_volume wikiPageWikiLink Isoperimetric_inequality.
- Mahler_volume wikiPageWikiLink Kurt_Mahler.
- Mahler_volume wikiPageWikiLink Linear_map.
- Mahler_volume wikiPageWikiLink N-sphere.
- Mahler_volume wikiPageWikiLink Octahedron.
- Mahler_volume wikiPageWikiLink Point_reflection.
- Mahler_volume wikiPageWikiLink Polar_set.
- Mahler_volume wikiPageWikiLink Polyhedron.
- Mahler_volume wikiPageWikiLink Polytope.
- Mahler_volume wikiPageWikiLink Terence_Tao.
- Mahler_volume wikiPageWikiLink Wilhelm_Blaschke.
- Mahler_volume wikiPageWikiLinkText "Mahler volume".
- Mahler_volume authorlink "Luis Santaló".
- Mahler_volume first "Luis".
- Mahler_volume last "Santaló".
- Mahler_volume wikiPageUsesTemplate Template:Citation.
- Mahler_volume wikiPageUsesTemplate Template:Cquote.
- Mahler_volume wikiPageUsesTemplate Template:Harvs.
- Mahler_volume wikiPageUsesTemplate Template:Harvtxt.
- Mahler_volume wikiPageUsesTemplate Template:Reflist.
- Mahler_volume year "1949".
- Mahler_volume subject Category:Convex_geometry.
- Mahler_volume subject Category:Geometric_inequalities.
- Mahler_volume subject Category:Volume.
- Mahler_volume hypernym Quantity.
- Mahler_volume type Inequality.
- Mahler_volume type Quantity.
- Mahler_volume type Redirect.
- Mahler_volume type Theorem.
- Mahler_volume comment "In convex geometry, the Mahler volume of a centrally symmetric convex body is a dimensionless quantity that is associated with the body and is invariant under linear transformations. It is named after German-English mathematician Kurt Mahler. It is known that the shapes with the largest possible Mahler volume are the spheres and ellipsoids; this is now known as the Blaschke–Santaló inequality.".
- Mahler_volume label "Mahler volume".
- Mahler_volume sameAs Q15864883.
- Mahler_volume sameAs マーラー体積.
- Mahler_volume sameAs m.05p4d24.
- Mahler_volume sameAs Q15864883.
- Mahler_volume wasDerivedFrom Mahler_volume?oldid=555726905.
- Mahler_volume isPrimaryTopicOf Mahler_volume.