Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Möbius_plane> ?p ?o }
Showing triples 1 to 76 of
76
with 100 triples per page.
- Möbius_plane abstract "In mathematics, a Möbius plane (named after August Ferdinand Möbius) is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. The classical example is based on the geometry of lines and circles in the real affine plane.A second name for Möbius plane is inversive plane. It is due to the existence of inversions in the classical Möbius plane. An inversion is an involutory mapping which leaves the points of a circle or line fixed (see below).".
- Möbius_plane thumbnail Moebius-touching-circles.svg?width=300.
- Möbius_plane wikiPageExternalLink circlegeom.pdf.
- Möbius_plane wikiPageExternalLink b110290.htm.
- Möbius_plane wikiPageExternalLink default.htm.
- Möbius_plane wikiPageExternalLink m064290.htm.
- Möbius_plane wikiPageID "38245519".
- Möbius_plane wikiPageLength "17096".
- Möbius_plane wikiPageOutDegree "51".
- Möbius_plane wikiPageRevisionID "690908092".
- Möbius_plane wikiPageWikiLink Affine_plane.
- Möbius_plane wikiPageWikiLink Affine_plane_(incidence_geometry).
- Möbius_plane wikiPageWikiLink August_Ferdinand_Möbius.
- Möbius_plane wikiPageWikiLink Automorphism.
- Möbius_plane wikiPageWikiLink Benz_plane.
- Möbius_plane wikiPageWikiLink Block_design.
- Möbius_plane wikiPageWikiLink Bundle_theorem.
- Möbius_plane wikiPageWikiLink Category:Classical_geometry.
- Möbius_plane wikiPageWikiLink Category:Incidence_geometry.
- Möbius_plane wikiPageWikiLink Collinearity.
- Möbius_plane wikiPageWikiLink Complex_number.
- Möbius_plane wikiPageWikiLink Elsevier.
- Möbius_plane wikiPageWikiLink Field_(mathematics).
- Möbius_plane wikiPageWikiLink Group_action.
- Möbius_plane wikiPageWikiLink Incidence_(geometry).
- Möbius_plane wikiPageWikiLink Incidence_structure.
- Möbius_plane wikiPageWikiLink Inscribed_angle.
- Möbius_plane wikiPageWikiLink Inversive_geometry.
- Möbius_plane wikiPageWikiLink Involution_(mathematics).
- Möbius_plane wikiPageWikiLink Isomorphism.
- Möbius_plane wikiPageWikiLink Laguerre_plane.
- Möbius_plane wikiPageWikiLink Michiel_Hazewinkel.
- Möbius_plane wikiPageWikiLink Minkowski_plane.
- Möbius_plane wikiPageWikiLink Miquels_theorem.
- Möbius_plane wikiPageWikiLink Möbius_transformation.
- Möbius_plane wikiPageWikiLink Point_at_infinity.
- Möbius_plane wikiPageWikiLink Projective_line.
- Möbius_plane wikiPageWikiLink Projective_plane.
- Möbius_plane wikiPageWikiLink Quadratic_form.
- Möbius_plane wikiPageWikiLink Quadratic_set.
- Möbius_plane wikiPageWikiLink Quadric_(projective_geometry).
- Möbius_plane wikiPageWikiLink Rational_number.
- Möbius_plane wikiPageWikiLink Springer_Science+Business_Media.
- Möbius_plane wikiPageWikiLink Stereographic_projection.
- Möbius_plane wikiPageWikiLink Tangent.
- Möbius_plane wikiPageWikiLink Two-dimensional_space.
- Möbius_plane wikiPageWikiLink File:Moebius-2d3d-model.svg.
- Möbius_plane wikiPageWikiLink File:Moebius-axioms.svg.
- Möbius_plane wikiPageWikiLink File:Moebius-minimal-model.svg.
- Möbius_plane wikiPageWikiLink File:Moebius-touching-circles.svg.
- Möbius_plane wikiPageWikiLink File:Stereografproj.svg.
- Möbius_plane wikiPageWikiLink File:Theorem-of-miquel.svg.
- Möbius_plane wikiPageWikiLinkText "Möbius plane".
- Möbius_plane wikiPageWikiLinkText "Miquel's theorem".
- Möbius_plane wikiPageWikiLinkText "Möbius or inversive plane".
- Möbius_plane wikiPageWikiLinkText "Möbius plane".
- Möbius_plane wikiPageWikiLinkText "classical real Möbius plane".
- Möbius_plane subject Category:Classical_geometry.
- Möbius_plane subject Category:Incidence_geometry.
- Möbius_plane hypernym Planes.
- Möbius_plane type AnatomicalStructure.
- Möbius_plane type Combinatoric.
- Möbius_plane type Diacritic.
- Möbius_plane type Field.
- Möbius_plane type Redirect.
- Möbius_plane comment "In mathematics, a Möbius plane (named after August Ferdinand Möbius) is one of the Benz planes: Möbius plane, Laguerre plane and Minkowski plane. The classical example is based on the geometry of lines and circles in the real affine plane.A second name for Möbius plane is inversive plane. It is due to the existence of inversions in the classical Möbius plane. An inversion is an involutory mapping which leaves the points of a circle or line fixed (see below).".
- Möbius_plane label "Möbius plane".
- Möbius_plane sameAs Q1392693.
- Möbius_plane sameAs Möbius-Ebene.
- Möbius_plane sameAs Շրջանային_հարթություն.
- Möbius_plane sameAs m.0gh6p12.
- Möbius_plane sameAs Круговая_плоскость.
- Möbius_plane sameAs Q1392693.
- Möbius_plane wasDerivedFrom Möbius_plane?oldid=690908092.
- Möbius_plane depiction Moebius-touching-circles.svg.
- Möbius_plane isPrimaryTopicOf Möbius_plane.