Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Lattès_map> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Lattès_map abstract "In mathematics, a Lattès map is a rational map f = ΘLΘ−1 from the complex sphere to itself such that Θ is a holomorphic map from a complex torus to the complex sphere and L is an affine map z → az + b from the complex torus to itself.Lattès maps are named after French mathematician Samuel Lattès, who wrote about them in 1918.".
- Lattès_map wikiPageID "28886032".
- Lattès_map wikiPageLength "958".
- Lattès_map wikiPageOutDegree "6".
- Lattès_map wikiPageRevisionID "576954118".
- Lattès_map wikiPageWikiLink Category:Dynamical_systems.
- Lattès_map wikiPageWikiLink Complex_torus.
- Lattès_map wikiPageWikiLink Comptes_rendus_de_lAcadxc3xa9mie_des_sciences.
- Lattès_map wikiPageWikiLink Holomorphic_function.
- Lattès_map wikiPageWikiLink Rational_mapping.
- Lattès_map wikiPageWikiLink Riemann_sphere.
- Lattès_map wikiPageWikiLinkText "Lattès map".
- Lattès_map wikiPageUsesTemplate Template:Citation.
- Lattès_map wikiPageUsesTemplate Template:Orphan.
- Lattès_map subject Category:Dynamical_systems.
- Lattès_map hypernym Map.
- Lattès_map type Software.
- Lattès_map type Diacritic.
- Lattès_map type Field.
- Lattès_map type Mechanic.
- Lattès_map type Physic.
- Lattès_map type Redirect.
- Lattès_map comment "In mathematics, a Lattès map is a rational map f = ΘLΘ−1 from the complex sphere to itself such that Θ is a holomorphic map from a complex torus to the complex sphere and L is an affine map z → az + b from the complex torus to itself.Lattès maps are named after French mathematician Samuel Lattès, who wrote about them in 1918.".
- Lattès_map label "Lattès map".
- Lattès_map sameAs Q6497180.
- Lattès_map sameAs m.0ddh34f.
- Lattès_map sameAs Q6497180.
- Lattès_map wasDerivedFrom Lattès_map?oldid=576954118.
- Lattès_map isPrimaryTopicOf Lattès_map.