Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Löwenheim_number> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Löwenheim_number abstract "In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds. They are named after Leopold Löwenheim, who proved that these exist for a very broad class of logics.".
- Löwenheim_number wikiPageExternalLink v=onepage&q&f=false.
- Löwenheim_number wikiPageExternalLink JV96.pdf.
- Löwenheim_number wikiPageID "28877484".
- Löwenheim_number wikiPageLength "4077".
- Löwenheim_number wikiPageOutDegree "17".
- Löwenheim_number wikiPageRevisionID "670167762".
- Löwenheim_number wikiPageWikiLink Abstract_logic.
- Löwenheim_number wikiPageWikiLink Axiom_schema_of_replacement.
- Löwenheim_number wikiPageWikiLink Cardinal_number.
- Löwenheim_number wikiPageWikiLink Category:Model_theory.
- Löwenheim_number wikiPageWikiLink Elementary_equivalence.
- Löwenheim_number wikiPageWikiLink First-order_logic.
- Löwenheim_number wikiPageWikiLink Hanf_number.
- Löwenheim_number wikiPageWikiLink Higher-order_logic.
- Löwenheim_number wikiPageWikiLink Infinitary_logic.
- Löwenheim_number wikiPageWikiLink Leopold_Löwenheim.
- Löwenheim_number wikiPageWikiLink Löwenheim–Skolem_theorem.
- Löwenheim_number wikiPageWikiLink Mathematical_logic.
- Löwenheim_number wikiPageWikiLink Measurable_cardinal.
- Löwenheim_number wikiPageWikiLink Second-order_logic.
- Löwenheim_number wikiPageWikiLink Supercompact_cardinal.
- Löwenheim_number wikiPageWikiLinkText "Löwenheim number".
- Löwenheim_number wikiPageUsesTemplate Template:!.
- Löwenheim_number subject Category:Model_theory.
- Löwenheim_number hypernym Number.
- Löwenheim_number type Diacritic.
- Löwenheim_number type Redirect.
- Löwenheim_number comment "In mathematical logic the Löwenheim number of an abstract logic is the smallest cardinal number for which a weak downward Löwenheim–Skolem theorem holds. They are named after Leopold Löwenheim, who proved that these exist for a very broad class of logics.".
- Löwenheim_number label "Löwenheim number".
- Löwenheim_number sameAs Q4988715.
- Löwenheim_number sameAs Löwenheim-getal.
- Löwenheim_number sameAs m.0ddclh2.
- Löwenheim_number sameAs Q4988715.
- Löwenheim_number wasDerivedFrom Löwenheim_number?oldid=670167762.
- Löwenheim_number isPrimaryTopicOf Löwenheim_number.