Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Komlós–Major–Tusnády_approximation> ?p ?o }
Showing triples 1 to 46 of
46
with 100 triples per page.
- Komlós–Major–Tusnády_approximation abstract "In theory of probability, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) is an approximation of the empirical process by a Gaussian process constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, Gábor Tusnády, and Péter Major.".
- Komlós–Major–Tusnády_approximation wikiPageID "29184958".
- Komlós–Major–Tusnády_approximation wikiPageLength "2912".
- Komlós–Major–Tusnády_approximation wikiPageOutDegree "21".
- Komlós–Major–Tusnády_approximation wikiPageRevisionID "642180724".
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Almost_surely.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Brownian_bridge.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Category:Empirical_process.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Category:Stochastic_processes.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Convergence_of_random_variables.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Cumulative_distribution_function.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Donskers_theorem.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Empirical_distribution_function.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Empirical_process.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Gaussian_process.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Gábor_Tusnády.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Independent_and_identically_distributed_random_variables.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink János_Komlós_(mathematician).
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Probability_space.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Probability_theory.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Péter_Major.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Random_variable.
- Komlós–Major–Tusnády_approximation wikiPageWikiLink Uniform_distribution_(continuous).
- Komlós–Major–Tusnády_approximation wikiPageWikiLinkText "Komlós–Major–Tusnády approximation".
- Komlós–Major–Tusnády_approximation date "January 2012".
- Komlós–Major–Tusnády_approximation reason "surely alpha and B can't be independent, so what is independent of what?".
- Komlós–Major–Tusnády_approximation wikiPageUsesTemplate Template:Clarify.
- Komlós–Major–Tusnády_approximation wikiPageUsesTemplate Template:DOI.
- Komlós–Major–Tusnády_approximation wikiPageUsesTemplate Template:Doi.
- Komlós–Major–Tusnády_approximation wikiPageUsesTemplate Template:No_footnotes.
- Komlós–Major–Tusnády_approximation subject Category:Empirical_process.
- Komlós–Major–Tusnády_approximation subject Category:Stochastic_processes.
- Komlós–Major–Tusnády_approximation hypernym Approximation.
- Komlós–Major–Tusnády_approximation type Election.
- Komlós–Major–Tusnády_approximation type Type.
- Komlós–Major–Tusnády_approximation type Diacritic.
- Komlós–Major–Tusnády_approximation type Process.
- Komlós–Major–Tusnády_approximation type Redirect.
- Komlós–Major–Tusnády_approximation type Type.
- Komlós–Major–Tusnády_approximation comment "In theory of probability, the Komlós–Major–Tusnády approximation (also known as the KMT approximation, the KMT embedding, or the Hungarian embedding) is an approximation of the empirical process by a Gaussian process constructed on the same probability space. It is named after Hungarian mathematicians János Komlós, Gábor Tusnády, and Péter Major.".
- Komlós–Major–Tusnády_approximation label "Komlós–Major–Tusnády approximation".
- Komlós–Major–Tusnády_approximation sameAs Q6428375.
- Komlós–Major–Tusnády_approximation sameAs m.0dlm9kr.
- Komlós–Major–Tusnády_approximation sameAs Q6428375.
- Komlós–Major–Tusnády_approximation wasDerivedFrom Komlós–Major–Tusnády_approximation?oldid=642180724.
- Komlós–Major–Tusnády_approximation isPrimaryTopicOf Komlós–Major–Tusnády_approximation.