Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Kleitman–Wang_algorithms> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Kleitman–Wang_algorithms abstract "The Kleitman–Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer. These constructions are based on recursive algorithms. Kleitman and Wang gave these algorithms in 1973.".
- Kleitman–Wang_algorithms wikiPageID "43237093".
- Kleitman–Wang_algorithms wikiPageLength "4164".
- Kleitman–Wang_algorithms wikiPageOutDegree "15".
- Kleitman–Wang_algorithms wikiPageRevisionID "690588184".
- Kleitman–Wang_algorithms wikiPageWikiLink Category:Graph_algorithms.
- Kleitman–Wang_algorithms wikiPageWikiLink Digraph_realization_problem.
- Kleitman–Wang_algorithms wikiPageWikiLink Directed_graph.
- Kleitman–Wang_algorithms wikiPageWikiLink Enumeration.
- Kleitman–Wang_algorithms wikiPageWikiLink Fulkerson–Chen–Anstee_theorem.
- Kleitman–Wang_algorithms wikiPageWikiLink Graph_theory.
- Kleitman–Wang_algorithms wikiPageWikiLink Integer.
- Kleitman–Wang_algorithms wikiPageWikiLink Lexicographical_order.
- Kleitman–Wang_algorithms wikiPageWikiLink List_(abstract_data_type).
- Kleitman–Wang_algorithms wikiPageWikiLink Recursion_(computer_science).
- Kleitman–Wang_algorithms wikiPageWikiLink Sequence.
- Kleitman–Wang_algorithms wikiPageWikiLinkText "Kleitman–Wang algorithms".
- Kleitman–Wang_algorithms wikiPageUsesTemplate Template:Citation.
- Kleitman–Wang_algorithms wikiPageUsesTemplate Template:Reflist.
- Kleitman–Wang_algorithms subject Category:Graph_algorithms.
- Kleitman–Wang_algorithms hypernym Algorithms.
- Kleitman–Wang_algorithms comment "The Kleitman–Wang algorithms are two different algorithms in graph theory solving the digraph realization problem, i.e. the question if there exists for a finite list of nonnegative integer pairs a simple directed graph such that its degree sequence is exactly this list. For a positive answer the list of integer pairs is called digraphic. Both algorithms construct a special solution if one exists or prove that one cannot find a positive answer.".
- Kleitman–Wang_algorithms label "Kleitman–Wang algorithms".
- Kleitman–Wang_algorithms sameAs Q18343454.
- Kleitman–Wang_algorithms sameAs m.011l95gj.
- Kleitman–Wang_algorithms sameAs Q18343454.
- Kleitman–Wang_algorithms wasDerivedFrom Kleitman–Wang_algorithms?oldid=690588184.
- Kleitman–Wang_algorithms isPrimaryTopicOf Kleitman–Wang_algorithms.