Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Kantor–Koecher–Tits_construction> ?p ?o }
Showing triples 1 to 34 of
34
with 100 triples per page.
- Kantor–Koecher–Tits_construction abstract "In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra, introduced by Jacques Tits (1962), Kantor (1964), and Koecher (1967).If J is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on J + J + Inner(J), the sum of 2 copies of J and the Lie algebra of inner derivations of J.When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133.The Kantor–Koecher–Tits construction was used by Kac (1977) to classify the finite-dimensional simple Jordan superalgebras.".
- Kantor–Koecher–Tits_construction wikiPageID "30230650".
- Kantor–Koecher–Tits_construction wikiPageLength "2320".
- Kantor–Koecher–Tits_construction wikiPageOutDegree "9".
- Kantor–Koecher–Tits_construction wikiPageRevisionID "706116524".
- Kantor–Koecher–Tits_construction wikiPageWikiLink Albert_algebra.
- Kantor–Koecher–Tits_construction wikiPageWikiLink American_Journal_of_Mathematics.
- Kantor–Koecher–Tits_construction wikiPageWikiLink American_Mathematical_Society.
- Kantor–Koecher–Tits_construction wikiPageWikiLink Category:Lie_algebras.
- Kantor–Koecher–Tits_construction wikiPageWikiLink Category:Non-associative_algebras.
- Kantor–Koecher–Tits_construction wikiPageWikiLink E7_(mathematics).
- Kantor–Koecher–Tits_construction wikiPageWikiLink Jordan_algebra.
- Kantor–Koecher–Tits_construction wikiPageWikiLink Lie_algebra.
- Kantor–Koecher–Tits_construction wikiPageWikiLinkText "Kantor–Koecher–Tits construction".
- Kantor–Koecher–Tits_construction authorLink "Jacques Tits".
- Kantor–Koecher–Tits_construction first "Jacques".
- Kantor–Koecher–Tits_construction last "Tits".
- Kantor–Koecher–Tits_construction wikiPageUsesTemplate Template:Citation.
- Kantor–Koecher–Tits_construction wikiPageUsesTemplate Template:Harvs.
- Kantor–Koecher–Tits_construction wikiPageUsesTemplate Template:Harvtxt.
- Kantor–Koecher–Tits_construction year "1962".
- Kantor–Koecher–Tits_construction subject Category:Lie_algebras.
- Kantor–Koecher–Tits_construction subject Category:Non-associative_algebras.
- Kantor–Koecher–Tits_construction hypernym Method.
- Kantor–Koecher–Tits_construction type Software.
- Kantor–Koecher–Tits_construction type Algebra.
- Kantor–Koecher–Tits_construction type Redirect.
- Kantor–Koecher–Tits_construction comment "In algebra, the Kantor–Koecher–Tits construction is a method of constructing a Lie algebra from a Jordan algebra, introduced by Jacques Tits (1962), Kantor (1964), and Koecher (1967).If J is a Jordan algebra, the Kantor–Koecher–Tits construction puts a Lie algebra structure on J + J + Inner(J), the sum of 2 copies of J and the Lie algebra of inner derivations of J.When applied to a 27-dimensional exceptional Jordan algebra it gives a Lie algebra of type E7 of dimension 133.The Kantor–Koecher–Tits construction was used by Kac (1977) to classify the finite-dimensional simple Jordan superalgebras.".
- Kantor–Koecher–Tits_construction label "Kantor–Koecher–Tits construction".
- Kantor–Koecher–Tits_construction sameAs Q6365576.
- Kantor–Koecher–Tits_construction sameAs m.0g53vh6.
- Kantor–Koecher–Tits_construction sameAs Q6365576.
- Kantor–Koecher–Tits_construction wasDerivedFrom Kantor–Koecher–Tits_construction?oldid=706116524.
- Kantor–Koecher–Tits_construction isPrimaryTopicOf Kantor–Koecher–Tits_construction.