Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/JSJ_decomposition> ?p ?o }
Showing triples 1 to 43 of
43
with 100 triples per page.
- JSJ_decomposition abstract "In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered.The acronym JSJ is for William Jaco, Peter Shalen, and Klaus Johannson. The first two worked together, and the third worked independently.".
- JSJ_decomposition wikiPageExternalLink 3Mdownloads.html.
- JSJ_decomposition wikiPageExternalLink LectureVA.pdf.
- JSJ_decomposition wikiPageExternalLink LectureVB.pdf.
- JSJ_decomposition wikiPageID "228599".
- JSJ_decomposition wikiPageLength "4377".
- JSJ_decomposition wikiPageOutDegree "28".
- JSJ_decomposition wikiPageRevisionID "629918766".
- JSJ_decomposition wikiPageWikiLink 3-manifold.
- JSJ_decomposition wikiPageWikiLink Anosov_diffeomorphism.
- JSJ_decomposition wikiPageWikiLink Atoroidal.
- JSJ_decomposition wikiPageWikiLink Category:3-manifolds.
- JSJ_decomposition wikiPageWikiLink Embedding.
- JSJ_decomposition wikiPageWikiLink Geometrization_conjecture.
- JSJ_decomposition wikiPageWikiLink Homotopy.
- JSJ_decomposition wikiPageWikiLink Incompressible_surface.
- JSJ_decomposition wikiPageWikiLink Irreducibility_(mathematics).
- JSJ_decomposition wikiPageWikiLink Klaus_Johannson.
- JSJ_decomposition wikiPageWikiLink Manifold_decomposition.
- JSJ_decomposition wikiPageWikiLink Mapping_torus.
- JSJ_decomposition wikiPageWikiLink Mathematics.
- JSJ_decomposition wikiPageWikiLink Orientability.
- JSJ_decomposition wikiPageWikiLink Peter_Shalen.
- JSJ_decomposition wikiPageWikiLink Satellite_knot.
- JSJ_decomposition wikiPageWikiLink Seifert_fiber_space.
- JSJ_decomposition wikiPageWikiLink Topology.
- JSJ_decomposition wikiPageWikiLink Torus.
- JSJ_decomposition wikiPageWikiLink William_Jaco.
- JSJ_decomposition wikiPageWikiLinkText "JSJ decomposition".
- JSJ_decomposition wikiPageWikiLinkText "Jaco–Shalen–Johannson-decomposition".
- JSJ_decomposition wikiPageWikiLinkText "Jaco-Shalen/Johannson torus decomposition".
- JSJ_decomposition subject Category:3-manifolds.
- JSJ_decomposition hypernym Atoroidal.
- JSJ_decomposition type Redirect.
- JSJ_decomposition comment "In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered.The acronym JSJ is for William Jaco, Peter Shalen, and Klaus Johannson.".
- JSJ_decomposition label "JSJ decomposition".
- JSJ_decomposition sameAs Q683430.
- JSJ_decomposition sameAs JSJ-Zerlegung.
- JSJ_decomposition sameAs Decomposizione_JSJ.
- JSJ_decomposition sameAs m.01h8r6.
- JSJ_decomposition sameAs Q683430.
- JSJ_decomposition wasDerivedFrom JSJ_decomposition?oldid=629918766.
- JSJ_decomposition isPrimaryTopicOf JSJ_decomposition.