Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Hyperfinite_type_II_factor> ?p ?o }
Showing triples 1 to 37 of
37
with 100 triples per page.
- Hyperfinite_type_II_factor abstract "In mathematics, there are up to isomorphism exactly two separably acting hyperfinite type II factors; one infinite and one finite. Murray and von Neumann proved that up to isomorphism there is a unique von Neumann algebra that is a factor of type II1 and also hyperfinite; it is called the hyperfinite type II1 factor.There are an uncountable number of other factors of type II1. Connes proved that the infinite one is also unique.".
- Hyperfinite_type_II_factor wikiPageExternalLink sici?sici=0003-486X%28194310%292%3A44%3A4%3C716%3AOROOI%3E2.0.CO%3B2-O.
- Hyperfinite_type_II_factor wikiPageExternalLink sici?sici=0003-486X%28197607%292%3A104%3A1%3C73%3ACOIFC%3E2.0.CO%3B2-V.
- Hyperfinite_type_II_factor wikiPageID "972868".
- Hyperfinite_type_II_factor wikiPageLength "3912".
- Hyperfinite_type_II_factor wikiPageOutDegree "22".
- Hyperfinite_type_II_factor wikiPageRevisionID "670293052".
- Hyperfinite_type_II_factor wikiPageWikiLink Alain_Connes.
- Hyperfinite_type_II_factor wikiPageWikiLink Amenable_group.
- Hyperfinite_type_II_factor wikiPageWikiLink Bounded_operator.
- Hyperfinite_type_II_factor wikiPageWikiLink Category:Von_Neumann_algebras.
- Hyperfinite_type_II_factor wikiPageWikiLink Continuous_geometry.
- Hyperfinite_type_II_factor wikiPageWikiLink Countable_set.
- Hyperfinite_type_II_factor wikiPageWikiLink Crossed_product.
- Hyperfinite_type_II_factor wikiPageWikiLink Hyperfinite.
- Hyperfinite_type_II_factor wikiPageWikiLink Infinite_conjugacy_class_property.
- Hyperfinite_type_II_factor wikiPageWikiLink Isomorphism.
- Hyperfinite_type_II_factor wikiPageWikiLink Locally_finite_group.
- Hyperfinite_type_II_factor wikiPageWikiLink Mathematics.
- Hyperfinite_type_II_factor wikiPageWikiLink Positive_real_numbers.
- Hyperfinite_type_II_factor wikiPageWikiLink Subfactor.
- Hyperfinite_type_II_factor wikiPageWikiLink Von_Neumann_algebra.
- Hyperfinite_type_II_factor wikiPageWikiLinkText "Hyperfinite type II factor".
- Hyperfinite_type_II_factor wikiPageWikiLinkText "hyperfinite type II factor".
- Hyperfinite_type_II_factor wikiPageWikiLinkText "type II-sub-one factors".
- Hyperfinite_type_II_factor subject Category:Von_Neumann_algebras.
- Hyperfinite_type_II_factor type Algebra.
- Hyperfinite_type_II_factor type Diacritic.
- Hyperfinite_type_II_factor type Redirect.
- Hyperfinite_type_II_factor comment "In mathematics, there are up to isomorphism exactly two separably acting hyperfinite type II factors; one infinite and one finite. Murray and von Neumann proved that up to isomorphism there is a unique von Neumann algebra that is a factor of type II1 and also hyperfinite; it is called the hyperfinite type II1 factor.There are an uncountable number of other factors of type II1. Connes proved that the infinite one is also unique.".
- Hyperfinite_type_II_factor label "Hyperfinite type II factor".
- Hyperfinite_type_II_factor sameAs Q5958003.
- Hyperfinite_type_II_factor sameAs Hiperskończony_faktor_typu_II1.
- Hyperfinite_type_II_factor sameAs m.03vnl5.
- Hyperfinite_type_II_factor sameAs Q5958003.
- Hyperfinite_type_II_factor wasDerivedFrom Hyperfinite_type_II_factor?oldid=670293052.
- Hyperfinite_type_II_factor isPrimaryTopicOf Hyperfinite_type_II_factor.