Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Hjalmar_Ekdal_topology> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Hjalmar_Ekdal_topology abstract "In mathematics, the Hjalmar Ekdal topology is a special example in the theory of topological spaces.The Hjalmar Ekdal topology consists of N* (the set of positive integers) together with the collection of all subsets of N* in which every odd member is accompanied by its even successor. Examples: {2}, {6, 9, 10}If all such subsets are declared \"open\", the \"closed\" subsets are consequently those in which every even member is accompanied by its odd predecessor.It is not compact, but it is locally compact, paracompact and second countable.".
- Hjalmar_Ekdal_topology wikiPageID "10014634".
- Hjalmar_Ekdal_topology wikiPageLength "2958".
- Hjalmar_Ekdal_topology wikiPageOutDegree "10".
- Hjalmar_Ekdal_topology wikiPageRevisionID "626901861".
- Hjalmar_Ekdal_topology wikiPageWikiLink Category:Topological_spaces.
- Hjalmar_Ekdal_topology wikiPageWikiLink Compact_space.
- Hjalmar_Ekdal_topology wikiPageWikiLink Henrik_Ibsen.
- Hjalmar_Ekdal_topology wikiPageWikiLink Integer.
- Hjalmar_Ekdal_topology wikiPageWikiLink Locally_compact_space.
- Hjalmar_Ekdal_topology wikiPageWikiLink Mathematics.
- Hjalmar_Ekdal_topology wikiPageWikiLink Paracompact_space.
- Hjalmar_Ekdal_topology wikiPageWikiLink Second-countable_space.
- Hjalmar_Ekdal_topology wikiPageWikiLink The_Wild_Duck.
- Hjalmar_Ekdal_topology wikiPageWikiLink Topological_space.
- Hjalmar_Ekdal_topology wikiPageWikiLinkText "Hjalmar Ekdal topology".
- Hjalmar_Ekdal_topology subject Category:Topological_spaces.
- Hjalmar_Ekdal_topology hypernym Example.
- Hjalmar_Ekdal_topology type Building.
- Hjalmar_Ekdal_topology type Redirect.
- Hjalmar_Ekdal_topology type Space.
- Hjalmar_Ekdal_topology comment "In mathematics, the Hjalmar Ekdal topology is a special example in the theory of topological spaces.The Hjalmar Ekdal topology consists of N* (the set of positive integers) together with the collection of all subsets of N* in which every odd member is accompanied by its even successor.".
- Hjalmar_Ekdal_topology label "Hjalmar Ekdal topology".
- Hjalmar_Ekdal_topology sameAs Q16513523.
- Hjalmar_Ekdal_topology sameAs Topologia_de_Hjalmar_Ekdal.
- Hjalmar_Ekdal_topology sameAs m.02pzv98.
- Hjalmar_Ekdal_topology sameAs Q16513523.
- Hjalmar_Ekdal_topology wasDerivedFrom Hjalmar_Ekdal_topology?oldid=626901861.
- Hjalmar_Ekdal_topology isPrimaryTopicOf Hjalmar_Ekdal_topology.