Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Hasse–Minkowski_theorem> ?p ?o }
Showing triples 1 to 56 of
56
with 100 triples per page.
- Hasse–Minkowski_theorem abstract "The Hasse–Minkowski theorem is a fundamental result in number theory which states that two quadratic forms over a number field are equivalent if and only if they are equivalent locally at all places, i.e. equivalent over every completion of the field (which may be real, complex, or p-adic). A special case is that a quadratic space over a number field is isotropic if and only if it is isotropic locally everywhere, or equivalently, that a quadratic form over a number field nontrivially represents zero if and only if this holds for all completions of the field. The theorem was proved in the case of the field of rational numbers by Hermann Minkowski and generalized to number fields by Helmut Hasse. The same statement holds even more generally for all global fields.".
- Hasse–Minkowski_theorem thumbnail 2adic12480.svg?width=300.
- Hasse–Minkowski_theorem wikiPageID "1109126".
- Hasse–Minkowski_theorem wikiPageLength "4422".
- Hasse–Minkowski_theorem wikiPageOutDegree "36".
- Hasse–Minkowski_theorem wikiPageRevisionID "640982906".
- Hasse–Minkowski_theorem wikiPageWikiLink Algebraic_extension.
- Hasse–Minkowski_theorem wikiPageWikiLink Algebraic_number_field.
- Hasse–Minkowski_theorem wikiPageWikiLink Algebraic_number_theory.
- Hasse–Minkowski_theorem wikiPageWikiLink Category:Quadratic_forms.
- Hasse–Minkowski_theorem wikiPageWikiLink Category:Theorems_in_number_theory.
- Hasse–Minkowski_theorem wikiPageWikiLink Completion_(algebra).
- Hasse–Minkowski_theorem wikiPageWikiLink Complex_number.
- Hasse–Minkowski_theorem wikiPageWikiLink Global_field.
- Hasse–Minkowski_theorem wikiPageWikiLink Glossary_of_arithmetic_and_Diophantine_geometry.
- Hasse–Minkowski_theorem wikiPageWikiLink Graduate_Texts_in_Mathematics.
- Hasse–Minkowski_theorem wikiPageWikiLink Hasse_invariant_of_a_quadratic_form.
- Hasse–Minkowski_theorem wikiPageWikiLink Hasse_principle.
- Hasse–Minkowski_theorem wikiPageWikiLink Helmut_Hasse.
- Hasse–Minkowski_theorem wikiPageWikiLink Hensels_lemma.
- Hasse–Minkowski_theorem wikiPageWikiLink Hermann_Minkowski.
- Hasse–Minkowski_theorem wikiPageWikiLink Isotropic_quadratic_form.
- Hasse–Minkowski_theorem wikiPageWikiLink Local_field.
- Hasse–Minkowski_theorem wikiPageWikiLink Newtons_method.
- Hasse–Minkowski_theorem wikiPageWikiLink Number_theory.
- Hasse–Minkowski_theorem wikiPageWikiLink P-adic_number.
- Hasse–Minkowski_theorem wikiPageWikiLink Quadratic_form.
- Hasse–Minkowski_theorem wikiPageWikiLink Rational_number.
- Hasse–Minkowski_theorem wikiPageWikiLink Real_number.
- Hasse–Minkowski_theorem wikiPageWikiLink Springer_Science+Business_Media.
- Hasse–Minkowski_theorem wikiPageWikiLink Sylvesters_law_of_inertia.
- Hasse–Minkowski_theorem wikiPageWikiLinkText "Hasse–Minkowski theorem".
- Hasse–Minkowski_theorem alt "The 2-adic integers. Showing all of the 2-adic rationals would include an infinite sequence of clumps moving to the left of the figure.".
- Hasse–Minkowski_theorem alt "The real number line".
- Hasse–Minkowski_theorem direction "vertical".
- Hasse–Minkowski_theorem footer "Two completions of the rational numbers, the dyadic numbers and the real numbers. The Hasse-Minkowski theorem gives a relationship between quadratic forms in a number field and in the completions of the number field.".
- Hasse–Minkowski_theorem image "2".
- Hasse–Minkowski_theorem image "Real number line.svg".
- Hasse–Minkowski_theorem width "300".
- Hasse–Minkowski_theorem wikiPageUsesTemplate Template:Cite_book.
- Hasse–Minkowski_theorem wikiPageUsesTemplate Template:Multiple_image.
- Hasse–Minkowski_theorem subject Category:Quadratic_forms.
- Hasse–Minkowski_theorem subject Category:Theorems_in_number_theory.
- Hasse–Minkowski_theorem hypernym Result.
- Hasse–Minkowski_theorem type Redirect.
- Hasse–Minkowski_theorem type Theorem.
- Hasse–Minkowski_theorem comment "The Hasse–Minkowski theorem is a fundamental result in number theory which states that two quadratic forms over a number field are equivalent if and only if they are equivalent locally at all places, i.e. equivalent over every completion of the field (which may be real, complex, or p-adic).".
- Hasse–Minkowski_theorem label "Hasse–Minkowski theorem".
- Hasse–Minkowski_theorem sameAs Q1938251.
- Hasse–Minkowski_theorem sameAs 하세-민코프스키_정리.
- Hasse–Minkowski_theorem sameAs Stelling_van_Hasse-Minkowski.
- Hasse–Minkowski_theorem sameAs m.046sj2.
- Hasse–Minkowski_theorem sameAs Q1938251.
- Hasse–Minkowski_theorem wasDerivedFrom Hasse–Minkowski_theorem?oldid=640982906.
- Hasse–Minkowski_theorem depiction 2adic12480.svg.
- Hasse–Minkowski_theorem isPrimaryTopicOf Hasse–Minkowski_theorem.