Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Goddard–Thorn_theorem> ?p ?o }
Showing triples 1 to 50 of
50
with 100 triples per page.
- Goddard–Thorn_theorem abstract "In mathematics, and in particular, in the mathematical background of string theory, the Goddard–Thorn theorem (also called the no-ghost theorem) is a theorem about certain vector spaces. It is named after Peter Goddard and Charles Thorn.The name \"no-ghost theorem\" stems from the fact that in the original statement of the theorem, the vector space inner product is positive definite. Thus, there were no vectors of negative norm for r ≠ 0. The name \"no-ghost theorem\" is also a word play on the phrase no-go theorem.".
- Goddard–Thorn_theorem wikiPageExternalLink setlink?base=preprint&categ=CM-P&id=CM-P00058839.
- Goddard–Thorn_theorem wikiPageID "730378".
- Goddard–Thorn_theorem wikiPageLength "3164".
- Goddard–Thorn_theorem wikiPageOutDegree "30".
- Goddard–Thorn_theorem wikiPageRevisionID "632933722".
- Goddard–Thorn_theorem wikiPageWikiLink Category:String_theory.
- Goddard–Thorn_theorem wikiPageWikiLink Category:Theorems_in_abstract_algebra.
- Goddard–Thorn_theorem wikiPageWikiLink Category:Theorems_in_mathematical_physics.
- Goddard–Thorn_theorem wikiPageWikiLink Center_(algebra).
- Goddard–Thorn_theorem wikiPageWikiLink Charles_Thorn.
- Goddard–Thorn_theorem wikiPageWikiLink Covering_group.
- Goddard–Thorn_theorem wikiPageWikiLink Degenerate_bilinear_form.
- Goddard–Thorn_theorem wikiPageWikiLink Eigenvalues_and_eigenvectors.
- Goddard–Thorn_theorem wikiPageWikiLink Faddeev–Popov_ghost.
- Goddard–Thorn_theorem wikiPageWikiLink G-module.
- Goddard–Thorn_theorem wikiPageWikiLink Generalized_Kac–Moody_algebra.
- Goddard–Thorn_theorem wikiPageWikiLink Group_(mathematics).
- Goddard–Thorn_theorem wikiPageWikiLink Hermitian_adjoint.
- Goddard–Thorn_theorem wikiPageWikiLink Inner_product_space.
- Goddard–Thorn_theorem wikiPageWikiLink Isomorphism.
- Goddard–Thorn_theorem wikiPageWikiLink Kernel_(linear_algebra).
- Goddard–Thorn_theorem wikiPageWikiLink Lorentzian_lattice.
- Goddard–Thorn_theorem wikiPageWikiLink Mathematics.
- Goddard–Thorn_theorem wikiPageWikiLink Monster_Lie_algebra.
- Goddard–Thorn_theorem wikiPageWikiLink No-go_theorem.
- Goddard–Thorn_theorem wikiPageWikiLink Peter_Goddard_(physicist).
- Goddard–Thorn_theorem wikiPageWikiLink Quotient_space_(topology).
- Goddard–Thorn_theorem wikiPageWikiLink String_theory.
- Goddard–Thorn_theorem wikiPageWikiLink Unimodular_lattice.
- Goddard–Thorn_theorem wikiPageWikiLink Vector_space.
- Goddard–Thorn_theorem wikiPageWikiLink Vertex_operator_algebra.
- Goddard–Thorn_theorem wikiPageWikiLink Virasoro_algebra.
- Goddard–Thorn_theorem wikiPageWikiLinkText "Goddard–Thorn "no-ghost" theorem".
- Goddard–Thorn_theorem wikiPageWikiLinkText "Goddard–Thorn theorem".
- Goddard–Thorn_theorem wikiPageWikiLinkText "no-ghost theorem".
- Goddard–Thorn_theorem subject Category:String_theory.
- Goddard–Thorn_theorem subject Category:Theorems_in_abstract_algebra.
- Goddard–Thorn_theorem subject Category:Theorems_in_mathematical_physics.
- Goddard–Thorn_theorem hypernym Theorem.
- Goddard–Thorn_theorem type Physic.
- Goddard–Thorn_theorem type Redirect.
- Goddard–Thorn_theorem type Theorem.
- Goddard–Thorn_theorem comment "In mathematics, and in particular, in the mathematical background of string theory, the Goddard–Thorn theorem (also called the no-ghost theorem) is a theorem about certain vector spaces. It is named after Peter Goddard and Charles Thorn.The name \"no-ghost theorem\" stems from the fact that in the original statement of the theorem, the vector space inner product is positive definite. Thus, there were no vectors of negative norm for r ≠ 0.".
- Goddard–Thorn_theorem label "Goddard–Thorn theorem".
- Goddard–Thorn_theorem sameAs Q5576268.
- Goddard–Thorn_theorem sameAs m.036dm8.
- Goddard–Thorn_theorem sameAs Q5576268.
- Goddard–Thorn_theorem wasDerivedFrom Goddard–Thorn_theorem?oldid=632933722.
- Goddard–Thorn_theorem isPrimaryTopicOf Goddard–Thorn_theorem.