Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Function_field_sieve> ?p ?o }
Showing triples 1 to 27 of
27
with 100 triples per page.
- Function_field_sieve abstract "In mathematics, the function field sieve was introduced in 1994 by Leonard Adleman as an efficient technique for extracting discrete logarithms over finite fields of small characteristic, and elaborated by Adleman and Huang in 1999.Sieving for points at which a polynomial-valued function is divisible by a given polynomial is not much more difficult than sieving over the integers – the underlying structure is fairly similar, and Gray code provides a convenient way to step through multiples of a given polynomial very efficiently.".
- Function_field_sieve wikiPageExternalLink inco.1998.2761.
- Function_field_sieve wikiPageID "22407581".
- Function_field_sieve wikiPageLength "881".
- Function_field_sieve wikiPageOutDegree "8".
- Function_field_sieve wikiPageRevisionID "573352800".
- Function_field_sieve wikiPageWikiLink Category:Field_theory.
- Function_field_sieve wikiPageWikiLink Characteristic_(algebra).
- Function_field_sieve wikiPageWikiLink Discrete_logarithm.
- Function_field_sieve wikiPageWikiLink Finite_field.
- Function_field_sieve wikiPageWikiLink Gray_code.
- Function_field_sieve wikiPageWikiLink Leonard_Adleman.
- Function_field_sieve wikiPageWikiLink Mathematics.
- Function_field_sieve wikiPageWikiLink Polynomial.
- Function_field_sieve wikiPageWikiLinkText "Function field sieve".
- Function_field_sieve wikiPageWikiLinkText "function field sieve".
- Function_field_sieve wikiPageUsesTemplate Template:Algebra-stub.
- Function_field_sieve wikiPageUsesTemplate Template:Number-theoretic_algorithms.
- Function_field_sieve wikiPageUsesTemplate Template:Numtheory-stub.
- Function_field_sieve subject Category:Field_theory.
- Function_field_sieve comment "In mathematics, the function field sieve was introduced in 1994 by Leonard Adleman as an efficient technique for extracting discrete logarithms over finite fields of small characteristic, and elaborated by Adleman and Huang in 1999.Sieving for points at which a polynomial-valued function is divisible by a given polynomial is not much more difficult than sieving over the integers – the underlying structure is fairly similar, and Gray code provides a convenient way to step through multiples of a given polynomial very efficiently.".
- Function_field_sieve label "Function field sieve".
- Function_field_sieve sameAs Q5508770.
- Function_field_sieve sameAs m.05t0pm6.
- Function_field_sieve sameAs Q5508770.
- Function_field_sieve wasDerivedFrom Function_field_sieve?oldid=573352800.
- Function_field_sieve isPrimaryTopicOf Function_field_sieve.