Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Five_circles_theorem> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Five_circles_theorem abstract "In geometry, the five circles theorem states that, given five circles centered on a common sixth circle and intersecting each other chainwise on the same circle, the lines joining the their second intersection points forms a pentagram whose points lie on the circles themselves.".
- Five_circles_theorem thumbnail Five_circles_theorem.svg?width=300.
- Five_circles_theorem wikiPageID "19334397".
- Five_circles_theorem wikiPageLength "942".
- Five_circles_theorem wikiPageOutDegree "10".
- Five_circles_theorem wikiPageRevisionID "586710011".
- Five_circles_theorem wikiPageWikiLink Category:Circles.
- Five_circles_theorem wikiPageWikiLink Category:Theorems_in_plane_geometry.
- Five_circles_theorem wikiPageWikiLink Circle.
- Five_circles_theorem wikiPageWikiLink Cliffords_circle_theorems.
- Five_circles_theorem wikiPageWikiLink Geometry.
- Five_circles_theorem wikiPageWikiLink Miquels_theorem.
- Five_circles_theorem wikiPageWikiLink Pentagram.
- Five_circles_theorem wikiPageWikiLink Seven_circles_theorem.
- Five_circles_theorem wikiPageWikiLink Six_circles_theorem.
- Five_circles_theorem wikiPageWikiLink File:Five_circles_theorem.svg.
- Five_circles_theorem wikiPageWikiLinkText "Five circles theorem".
- Five_circles_theorem title "Miquel Five Circles Theorem".
- Five_circles_theorem title "Miquel Pentagram Theorem".
- Five_circles_theorem urlname "MiquelFiveCirclesTheorem".
- Five_circles_theorem urlname "MiquelsPentagramTheorem".
- Five_circles_theorem wikiPageUsesTemplate Template:Cite_book.
- Five_circles_theorem wikiPageUsesTemplate Template:MathWorld.
- Five_circles_theorem subject Category:Circles.
- Five_circles_theorem subject Category:Theorems_in_plane_geometry.
- Five_circles_theorem type Theorem.
- Five_circles_theorem comment "In geometry, the five circles theorem states that, given five circles centered on a common sixth circle and intersecting each other chainwise on the same circle, the lines joining the their second intersection points forms a pentagram whose points lie on the circles themselves.".
- Five_circles_theorem label "Five circles theorem".
- Five_circles_theorem sameAs Q5456213.
- Five_circles_theorem sameAs قضیه_پنج_دایره.
- Five_circles_theorem sameAs m.04mykd0.
- Five_circles_theorem sameAs Định_lý_năm_đường_tròn.
- Five_circles_theorem sameAs Q5456213.
- Five_circles_theorem wasDerivedFrom Five_circles_theorem?oldid=586710011.
- Five_circles_theorem depiction Five_circles_theorem.svg.
- Five_circles_theorem isPrimaryTopicOf Five_circles_theorem.