Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Elementary_definition> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Elementary_definition abstract "In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification.Elementary definitions are of particular interest because they admit a complete proof apparatus while still being expressive enough to support most everyday mathematics (via the addition of elementarily-expressible axioms such as ZFC).Saying that a definition is elementary is a weaker condition than saying it is algebraic.".
- Elementary_definition wikiPageID "23914313".
- Elementary_definition wikiPageLength "867".
- Elementary_definition wikiPageOutDegree "10".
- Elementary_definition wikiPageRevisionID "327373287".
- Elementary_definition wikiPageWikiLink Algebraic_definition.
- Elementary_definition wikiPageWikiLink Category:Mathematical_logic.
- Elementary_definition wikiPageWikiLink Elementary_sentence.
- Elementary_definition wikiPageWikiLink Elementary_theory.
- Elementary_definition wikiPageWikiLink Finitary.
- Elementary_definition wikiPageWikiLink First-order_logic.
- Elementary_definition wikiPageWikiLink Gxc3xb6dels_completeness_theorem.
- Elementary_definition wikiPageWikiLink Mathematical_logic.
- Elementary_definition wikiPageWikiLink Plural_quantification.
- Elementary_definition wikiPageWikiLink Set_theory.
- Elementary_definition wikiPageWikiLinkText "Elementary definition".
- Elementary_definition wikiPageWikiLinkText "elementary".
- Elementary_definition wikiPageUsesTemplate Template:Mathlogic-stub.
- Elementary_definition subject Category:Mathematical_logic.
- Elementary_definition hypernym Definition.
- Elementary_definition type VideoGame.
- Elementary_definition type Field.
- Elementary_definition comment "In mathematical logic, an elementary definition is a definition that can be made using only finitary first-order logic, and in particular without reference to set theory or using extensions such as plural quantification.Elementary definitions are of particular interest because they admit a complete proof apparatus while still being expressive enough to support most everyday mathematics (via the addition of elementarily-expressible axioms such as ZFC).Saying that a definition is elementary is a weaker condition than saying it is algebraic.".
- Elementary_definition label "Elementary definition".
- Elementary_definition sameAs Q5358901.
- Elementary_definition sameAs m.076tvs5.
- Elementary_definition sameAs Q5358901.
- Elementary_definition wasDerivedFrom Elementary_definition?oldid=327373287.
- Elementary_definition isPrimaryTopicOf Elementary_definition.