Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Einstein_notation> ?p ?o }
- Einstein_notation abstract "In mathematics, especially in applications of linear algebra to physics, the Einstein notation or Einstein summation convention is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving notational brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in physics that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.".
- Einstein_notation wikiPageExternalLink lecture10final.pdfc.
- Einstein_notation wikiPageID "195407".
- Einstein_notation wikiPageLength "12232".
- Einstein_notation wikiPageOutDegree "61".
- Einstein_notation wikiPageRevisionID "701542869".
- Einstein_notation wikiPageWikiLink Abstract_index_notation.
- Einstein_notation wikiPageWikiLink Albert_Einstein.
- Einstein_notation wikiPageWikiLink Basis_(linear_algebra).
- Einstein_notation wikiPageWikiLink Bra–ket_notation.
- Einstein_notation wikiPageWikiLink Category:Albert_Einstein.
- Einstein_notation wikiPageWikiLink Category:Mathematical_notation.
- Einstein_notation wikiPageWikiLink Category:Mathematical_physics.
- Einstein_notation wikiPageWikiLink Category:Multilinear_algebra.
- Einstein_notation wikiPageWikiLink Category:Riemannian_geometry.
- Einstein_notation wikiPageWikiLink Category:Tensors.
- Einstein_notation wikiPageWikiLink Coefficient.
- Einstein_notation wikiPageWikiLink Coordinate_vector.
- Einstein_notation wikiPageWikiLink Cotangent_space.
- Einstein_notation wikiPageWikiLink Covariance_and_contravariance_of_vectors.
- Einstein_notation wikiPageWikiLink Cross_product.
- Einstein_notation wikiPageWikiLink Dot_product.
- Einstein_notation wikiPageWikiLink Dual_basis.
- Einstein_notation wikiPageWikiLink Dual_space.
- Einstein_notation wikiPageWikiLink Exponentiation.
- Einstein_notation wikiPageWikiLink Free_variables_and_bound_variables.
- Einstein_notation wikiPageWikiLink General_relativity.
- Einstein_notation wikiPageWikiLink Greek_alphabet.
- Einstein_notation wikiPageWikiLink Indexed_family.
- Einstein_notation wikiPageWikiLink Infinite_set.
- Einstein_notation wikiPageWikiLink Inner_product_space.
- Einstein_notation wikiPageWikiLink Kronecker_delta.
- Einstein_notation wikiPageWikiLink Latin_alphabet.
- Einstein_notation wikiPageWikiLink Levi-Civita_symbol.
- Einstein_notation wikiPageWikiLink Linear_algebra.
- Einstein_notation wikiPageWikiLink Lorentz_scalar.
- Einstein_notation wikiPageWikiLink Mathematics.
- Einstein_notation wikiPageWikiLink Matrix_multiplication.
- Einstein_notation wikiPageWikiLink Minkowski_space.
- Einstein_notation wikiPageWikiLink One-form.
- Einstein_notation wikiPageWikiLink Orthogonal_basis.
- Einstein_notation wikiPageWikiLink Outer_product.
- Einstein_notation wikiPageWikiLink Penrose_graphical_notation.
- Einstein_notation wikiPageWikiLink Physics.
- Einstein_notation wikiPageWikiLink Raising_and_lowering_indices.
- Einstein_notation wikiPageWikiLink Ricci_calculus.
- Einstein_notation wikiPageWikiLink Riemannian_manifold.
- Einstein_notation wikiPageWikiLink Scalar_(physics).
- Einstein_notation wikiPageWikiLink Set_(mathematics).
- Einstein_notation wikiPageWikiLink Tangent_space.
- Einstein_notation wikiPageWikiLink Tensor.
- Einstein_notation wikiPageWikiLink Tensor_product.
- Einstein_notation wikiPageWikiLink Trace_(linear_algebra).
- Einstein_notation wikiPageWikiLinkText "Einstein Summation Convention".
- Einstein_notation wikiPageWikiLinkText "Einstein notation".
- Einstein_notation wikiPageWikiLinkText "Einstein summation convention".
- Einstein_notation wikiPageWikiLinkText "Einstein summation notation".
- Einstein_notation wikiPageWikiLinkText "Einstein's summation convention".
- Einstein_notation wikiPageWikiLinkText "Free and dummy indices".
- Einstein_notation wikiPageWikiLinkText "Summation over repeated indices".
- Einstein_notation wikiPageWikiLinkText "dummy index".
- Einstein_notation wikiPageWikiLinkText "implied summation".
- Einstein_notation wikiPageWikiLinkText "index notation".
- Einstein_notation wikiPageWikiLinkText "indices".
- Einstein_notation wikiPageWikiLinkText "is implied".
- Einstein_notation wikiPageWikiLinkText "omitted".
- Einstein_notation wikiPageWikiLinkText "summation convention".
- Einstein_notation wikiPageWikiLinkText "summation is implied".
- Einstein_notation wikiPageWikiLinkText "summation on the repeated index".
- Einstein_notation wikiPageWikiLinkText "summation over indices".
- Einstein_notation wikiPageWikiLinkText "summation over repeated matrix indices".
- Einstein_notation wikiPageWikiLinkText "summation".
- Einstein_notation first "L.P.".
- Einstein_notation id "E/e035220".
- Einstein_notation last "Kuptsov".
- Einstein_notation title "Einstein rule".
- Einstein_notation wikiPageUsesTemplate Template:Cite_news.
- Einstein_notation wikiPageUsesTemplate Template:Math.
- Einstein_notation wikiPageUsesTemplate Template:Note_label.
- Einstein_notation wikiPageUsesTemplate Template:Reflist.
- Einstein_notation wikiPageUsesTemplate Template:Springer.
- Einstein_notation wikiPageUsesTemplate Template:Tensors.
- Einstein_notation wikiPageUsesTemplate Template:Wikibooks.
- Einstein_notation subject Category:Albert_Einstein.
- Einstein_notation subject Category:Mathematical_notation.
- Einstein_notation subject Category:Mathematical_physics.
- Einstein_notation subject Category:Multilinear_algebra.
- Einstein_notation subject Category:Riemannian_geometry.
- Einstein_notation subject Category:Tensors.
- Einstein_notation hypernym Convention.
- Einstein_notation type Convention.
- Einstein_notation type Scientist.
- Einstein_notation type Concept.
- Einstein_notation type Physic.
- Einstein_notation type Scientist.
- Einstein_notation type Tensor.
- Einstein_notation comment "In mathematics, especially in applications of linear algebra to physics, the Einstein notation or Einstein summation convention is a notational convention that implies summation over a set of indexed terms in a formula, thus achieving notational brevity. As part of mathematics it is a notational subset of Ricci calculus; however, it is often used in applications in physics that do not distinguish between tangent and cotangent spaces. It was introduced to physics by Albert Einstein in 1916.".
- Einstein_notation label "Einstein notation".
- Einstein_notation sameAs Q673253.
- Einstein_notation sameAs Conveni_de_sumacixc3xb3_dEinstein.