Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Einstein–Hermitian_vector_bundle> ?p ?o }
Showing triples 1 to 36 of
36
with 100 triples per page.
- Einstein–Hermitian_vector_bundle abstract "In differential geometry, an Einstein–Hermitian vector bundle is a Hermitian vector bundle over a Hermitian manifold whose metric is an Einstein–Hermitian metric, meaning that it satisfies the Einstein condition that the mean curvature, considered as an endomorphism of the vector bundle, is a constant times the identity operator. Einstein–Hermitian vector bundles were introduced by Kobayashi (1980, section 6).The Kobayashi–Hitchin correspondence implies that Einstein–Hermitian vector bundles are closely related to stable vector bundles. For example, every irreducible Einstein–Hermitian vector bundle over a compact Kähler manifold is stable.".
- Einstein–Hermitian_vector_bundle wikiPageExternalLink 1118786013.
- Einstein–Hermitian_vector_bundle wikiPageID "37851636".
- Einstein–Hermitian_vector_bundle wikiPageLength "1450".
- Einstein–Hermitian_vector_bundle wikiPageOutDegree "9".
- Einstein–Hermitian_vector_bundle wikiPageRevisionID "647714880".
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Category:Albert_Einstein.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Category:Vector_bundles.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Einstein_manifold.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Holomorphic_vector_bundle.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Kobayashi–Hitchin_correspondence.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Kähler_manifold.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Princeton_University_Press.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Stable_vector_bundle.
- Einstein–Hermitian_vector_bundle wikiPageWikiLink Vector_bundle.
- Einstein–Hermitian_vector_bundle wikiPageWikiLinkText "Einstein–Hermitian vector bundle".
- Einstein–Hermitian_vector_bundle authorlink "Shoshichi Kobayashi".
- Einstein–Hermitian_vector_bundle last "Kobayashi".
- Einstein–Hermitian_vector_bundle loc "section 6".
- Einstein–Hermitian_vector_bundle wikiPageUsesTemplate Template:Citation.
- Einstein–Hermitian_vector_bundle wikiPageUsesTemplate Template:Harvs.
- Einstein–Hermitian_vector_bundle year "1980".
- Einstein–Hermitian_vector_bundle subject Category:Albert_Einstein.
- Einstein–Hermitian_vector_bundle subject Category:Vector_bundles.
- Einstein–Hermitian_vector_bundle hypernym Bundle.
- Einstein–Hermitian_vector_bundle type AnatomicalStructure.
- Einstein–Hermitian_vector_bundle type Scientist.
- Einstein–Hermitian_vector_bundle type Bundle.
- Einstein–Hermitian_vector_bundle type Scientist.
- Einstein–Hermitian_vector_bundle comment "In differential geometry, an Einstein–Hermitian vector bundle is a Hermitian vector bundle over a Hermitian manifold whose metric is an Einstein–Hermitian metric, meaning that it satisfies the Einstein condition that the mean curvature, considered as an endomorphism of the vector bundle, is a constant times the identity operator.".
- Einstein–Hermitian_vector_bundle label "Einstein–Hermitian vector bundle".
- Einstein–Hermitian_vector_bundle sameAs Q5349809.
- Einstein–Hermitian_vector_bundle sameAs m.0n_j9j3.
- Einstein–Hermitian_vector_bundle sameAs Q5349809.
- Einstein–Hermitian_vector_bundle wasDerivedFrom Einstein–Hermitian_vector_bundle?oldid=647714880.
- Einstein–Hermitian_vector_bundle isPrimaryTopicOf Einstein–Hermitian_vector_bundle.