Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/De_Moivre–Laplace_theorem> ?p ?o }
Showing triples 1 to 53 of
53
with 100 triples per page.
- De_Moivre–Laplace_theorem abstract "In probability theory, the de Moivre–Laplace theorem, which is a special case of the central limit theorem, states that the normal distribution may be used as an approximation to the binomial distribution under certain conditions. In particular, the theorem shows that the probability mass function of the random number of \"successes\" observed in a series of n independent Bernoulli trials, each having probability p of success (a binomial distribution with n trials), converges to the probability density function of the normal distribution with mean np and standard deviation √np(1-p), as n grows large, assuming p is not 0 or 1.The theorem appeared in the second edition of The Doctrine of Chances by Abraham de Moivre, published in 1738. Although de Moivre did not use the term \"Bernoulli trials\", he wrote about the probability distribution of the number of times \"heads\" appears when a coin is tossed 3600 times.This is one derivation of the particular Gaussian function used in the normal distribution.".
- De_Moivre–Laplace_theorem thumbnail Quincunx_(Galton_Box)_-_Galton_1889_diagram.png?width=300.
- De_Moivre–Laplace_theorem wikiPageID "19451264".
- De_Moivre–Laplace_theorem wikiPageLength "8468".
- De_Moivre–Laplace_theorem wikiPageOutDegree "20".
- De_Moivre–Laplace_theorem wikiPageRevisionID "695205587".
- De_Moivre–Laplace_theorem wikiPageWikiLink Abraham_de_Moivre.
- De_Moivre–Laplace_theorem wikiPageWikiLink Bernoulli_trial.
- De_Moivre–Laplace_theorem wikiPageWikiLink Binomial_distribution.
- De_Moivre–Laplace_theorem wikiPageWikiLink Category:Central_limit_theorem.
- De_Moivre–Laplace_theorem wikiPageWikiLink Central_limit_theorem.
- De_Moivre–Laplace_theorem wikiPageWikiLink Convergence_of_random_variables.
- De_Moivre–Laplace_theorem wikiPageWikiLink File:Quincunx_(Galton_Box)_-_Galton_1889_diagram.png.
- De_Moivre–Laplace_theorem wikiPageWikiLink Gaussian_function.
- De_Moivre–Laplace_theorem wikiPageWikiLink Independence_(probability_theory).
- De_Moivre–Laplace_theorem wikiPageWikiLink Neighbourhood_(mathematics).
- De_Moivre–Laplace_theorem wikiPageWikiLink Normal_distribution.
- De_Moivre–Laplace_theorem wikiPageWikiLink Poisson_distribution.
- De_Moivre–Laplace_theorem wikiPageWikiLink Probability_density_function.
- De_Moivre–Laplace_theorem wikiPageWikiLink Probability_distribution.
- De_Moivre–Laplace_theorem wikiPageWikiLink Probability_mass_function.
- De_Moivre–Laplace_theorem wikiPageWikiLink Probability_theory.
- De_Moivre–Laplace_theorem wikiPageWikiLink Stirlings_approximation.
- De_Moivre–Laplace_theorem wikiPageWikiLink The_Doctrine_of_Chances.
- De_Moivre–Laplace_theorem wikiPageWikiLink File:De_moivre-laplace.gif.
- De_Moivre–Laplace_theorem wikiPageWikiLinkText "De Moivre–Laplace theorem".
- De_Moivre–Laplace_theorem wikiPageWikiLinkText "approximately normal".
- De_Moivre–Laplace_theorem wikiPageWikiLinkText "de Moivre–Laplace theorem".
- De_Moivre–Laplace_theorem wikiPageUsesTemplate Template:Math.
- De_Moivre–Laplace_theorem wikiPageUsesTemplate Template:Radical.
- De_Moivre–Laplace_theorem wikiPageUsesTemplate Template:Reflist.
- De_Moivre–Laplace_theorem subject Category:Central_limit_theorem.
- De_Moivre–Laplace_theorem hypernym Case.
- De_Moivre–Laplace_theorem type SupremeCourtOfTheUnitedStatesCase.
- De_Moivre–Laplace_theorem type Redirect.
- De_Moivre–Laplace_theorem comment "In probability theory, the de Moivre–Laplace theorem, which is a special case of the central limit theorem, states that the normal distribution may be used as an approximation to the binomial distribution under certain conditions.".
- De_Moivre–Laplace_theorem label "De Moivre–Laplace theorem".
- De_Moivre–Laplace_theorem sameAs Q1855610.
- De_Moivre–Laplace_theorem sameAs Satz_von_Moivre-Laplace.
- De_Moivre–Laplace_theorem sameAs Teorema_de_De_Moivre-Laplace.
- De_Moivre–Laplace_theorem sameAs De_Moivre-Laplace_teorema.
- De_Moivre–Laplace_theorem sameAs Théorème_de_Moivre-Laplace.
- De_Moivre–Laplace_theorem sameAs Stelling_van_De_Moivre-Laplace.
- De_Moivre–Laplace_theorem sameAs Twierdzenie_de_Moivrea-Laplacea.
- De_Moivre–Laplace_theorem sameAs Teorema_ëd_Moivre-Laplace.
- De_Moivre–Laplace_theorem sameAs m.04m_vsq.
- De_Moivre–Laplace_theorem sameAs Локальная_теорема_Муавра_—_Лапласа.
- De_Moivre–Laplace_theorem sameAs டி_மாவர்-லாப்லாசு_தேற்றம்.
- De_Moivre–Laplace_theorem sameAs Локальна_теорема_Муавра_—_Лапласа.
- De_Moivre–Laplace_theorem sameAs Q1855610.
- De_Moivre–Laplace_theorem wasDerivedFrom De_Moivre–Laplace_theorem?oldid=695205587.
- De_Moivre–Laplace_theorem depiction Quincunx_(Galton_Box)_-_Galton_1889_diagram.png.
- De_Moivre–Laplace_theorem isPrimaryTopicOf De_Moivre–Laplace_theorem.