Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Compound_of_six_cubes_with_rotational_freedom> ?p ?o }
Showing triples 1 to 35 of
35
with 100 triples per page.
- Compound_of_six_cubes_with_rotational_freedom abstract "This uniform polyhedron compound is a symmetric arrangement of 6 cubes, considered as square prisms. It can be constructed by superimposing six identical cubes, and then rotating them in pairs about the three axes that pass through the centres of two opposite cubic faces. Each cube is rotated by an equal (and opposite, within a pair) angle θ.When θ=0, all six cubes coincide. When θ is 45 degrees, the cubes coincide in pairs yielding (two superimposed copies of) the compound of three cubes.".
- Compound_of_six_cubes_with_rotational_freedom thumbnail UC07-6_cubes.png?width=300.
- Compound_of_six_cubes_with_rotational_freedom wikiPageID "14892705".
- Compound_of_six_cubes_with_rotational_freedom wikiPageLength "1691".
- Compound_of_six_cubes_with_rotational_freedom wikiPageOutDegree "14".
- Compound_of_six_cubes_with_rotational_freedom wikiPageRevisionID "575382213".
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Cartesian_coordinate_system.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Category:Polyhedral_compounds.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Compound_of_three_cubes.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Cube.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Cuboid.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Cyclic_symmetry_in_three_dimensions.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Octahedral_symmetry.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Square.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Subgroup.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Symmetry_group.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink Uniform_polyhedron_compound.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLink File:UC07-6_cubes.png.
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLinkText "Compound of six cubes with rotational freedom".
- Compound_of_six_cubes_with_rotational_freedom wikiPageWikiLinkText "compound of six cubes with rotational freedom".
- Compound_of_six_cubes_with_rotational_freedom wikiPageUsesTemplate Template:Citation.
- Compound_of_six_cubes_with_rotational_freedom wikiPageUsesTemplate Template:Polyhedron-stub.
- Compound_of_six_cubes_with_rotational_freedom subject Category:Polyhedral_compounds.
- Compound_of_six_cubes_with_rotational_freedom hypernym Arrangement.
- Compound_of_six_cubes_with_rotational_freedom type MusicalWork.
- Compound_of_six_cubes_with_rotational_freedom comment "This uniform polyhedron compound is a symmetric arrangement of 6 cubes, considered as square prisms. It can be constructed by superimposing six identical cubes, and then rotating them in pairs about the three axes that pass through the centres of two opposite cubic faces. Each cube is rotated by an equal (and opposite, within a pair) angle θ.When θ=0, all six cubes coincide. When θ is 45 degrees, the cubes coincide in pairs yielding (two superimposed copies of) the compound of three cubes.".
- Compound_of_six_cubes_with_rotational_freedom label "Compound of six cubes with rotational freedom".
- Compound_of_six_cubes_with_rotational_freedom sameAs Q5156875.
- Compound_of_six_cubes_with_rotational_freedom sameAs Kombinaĵo_de_6_kuboj_kun_turna_libereco.
- Compound_of_six_cubes_with_rotational_freedom sameAs m.03h0pmp.
- Compound_of_six_cubes_with_rotational_freedom sameAs Sestav_šestih_kock_z_vrtilno_svobodo.
- Compound_of_six_cubes_with_rotational_freedom sameAs Q5156875.
- Compound_of_six_cubes_with_rotational_freedom wasDerivedFrom Compound_of_six_cubes_with_rotational_freedom?oldid=575382213.
- Compound_of_six_cubes_with_rotational_freedom depiction UC07-6_cubes.png.
- Compound_of_six_cubes_with_rotational_freedom isPrimaryTopicOf Compound_of_six_cubes_with_rotational_freedom.