Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Changs_model> ?p ?o }
Showing triples 1 to 24 of
24
with 100 triples per page.
- Changs_model abstract "In mathematical set theory, Chang's model is the smallest inner model of set theory closed under countable sequences. It was introduced by Chang (1971). More generally Chang introduced the smallest inner model closed under taking sequences of length less than κ for any infinite cardinal κ. For κ countable this is the constructible universe, and for κ the first uncountable cardinal it is Chang's model.".
- Changs_model wikiPageID "43565537".
- Changs_model wikiPageLength "820".
- Changs_model wikiPageOutDegree "6".
- Changs_model wikiPageRevisionID "621453134".
- Changs_model wikiPageWikiLink Cardinal_number.
- Changs_model wikiPageWikiLink Category:Inner_model_theory.
- Changs_model wikiPageWikiLink Constructible_universe.
- Changs_model wikiPageWikiLink Countable_set.
- Changs_model wikiPageWikiLink Inner_model.
- Changs_model wikiPageWikiLink Set_theory.
- Changs_model wikiPageWikiLinkText "Chang's model".
- Changs_model wikiPageUsesTemplate Template:Citation.
- Changs_model wikiPageUsesTemplate Template:Harvs.
- Changs_model subject Category:Inner_model_theory.
- Changs_model hypernym Model.
- Changs_model type Person.
- Changs_model comment "In mathematical set theory, Chang's model is the smallest inner model of set theory closed under countable sequences. It was introduced by Chang (1971). More generally Chang introduced the smallest inner model closed under taking sequences of length less than κ for any infinite cardinal κ. For κ countable this is the constructible universe, and for κ the first uncountable cardinal it is Chang's model.".
- Changs_model label "Chang's model".
- Changs_model sameAs Q18205929.
- Changs_model sameAs m.011q9ym_.
- Changs_model sameAs Q18205929.
- Changs_model wasDerivedFrom Changs_model?oldid=621453134.
- Changs_model isPrimaryTopicOf Changs_model.