Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Bracket_algebra> ?p ?o }
Showing triples 1 to 25 of
25
with 100 triples per page.
- Bracket_algebra abstract "In mathematics, a bracket algebra is an algebraic system that connects the notion of a supersymmetry algebra with a symbolic representation of projective invariants.Given that L is a proper signed alphabet and Super[L] is the supersymmetric algebra, the bracket algebra Bracket[L] of dimension n over the field K is the quotient of the algebra Brace{L} obtained by imposing the congruence relations below, where w, w', ..., w\" are any monomials in Super[L]: {w} = 0 if length(w) ≠ n {w}{w'}...{w\"} = 0 whenever any positive letter a of L occurs more than n times in the monomial {w}{w'}...{w\"}. Let {w}{w'}...{w\"} be a monomial in Brace{L} in which some positive letter a occurs more than n times, and let b, c, d, e, ..., f, g be any letters in L.".
- Bracket_algebra wikiPageExternalLink q821633w3291351g.
- Bracket_algebra wikiPageID "12201337".
- Bracket_algebra wikiPageLength "1913".
- Bracket_algebra wikiPageOutDegree "5".
- Bracket_algebra wikiPageRevisionID "646373285".
- Bracket_algebra wikiPageWikiLink Bracket_ring.
- Bracket_algebra wikiPageWikiLink Category:Algebras.
- Bracket_algebra wikiPageWikiLink Category:Invariant_theory.
- Bracket_algebra wikiPageWikiLink Cross-ratio.
- Bracket_algebra wikiPageWikiLink Supersymmetry_algebra.
- Bracket_algebra wikiPageWikiLinkText "Bracket algebra".
- Bracket_algebra wikiPageUsesTemplate Template:Citation.
- Bracket_algebra wikiPageUsesTemplate Template:Mergeto.
- Bracket_algebra subject Category:Algebras.
- Bracket_algebra subject Category:Invariant_theory.
- Bracket_algebra hypernym System.
- Bracket_algebra type Algebra.
- Bracket_algebra comment "In mathematics, a bracket algebra is an algebraic system that connects the notion of a supersymmetry algebra with a symbolic representation of projective invariants.Given that L is a proper signed alphabet and Super[L] is the supersymmetric algebra, the bracket algebra Bracket[L] of dimension n over the field K is the quotient of the algebra Brace{L} obtained by imposing the congruence relations below, where w, w', ..., w\" are any monomials in Super[L]: {w} = 0 if length(w) ≠ n {w}{w'}...{w\"} = 0 whenever any positive letter a of L occurs more than n times in the monomial {w}{w'}...{w\"}. ".
- Bracket_algebra label "Bracket algebra".
- Bracket_algebra sameAs Q4953687.
- Bracket_algebra sameAs m.02vvn1w.
- Bracket_algebra sameAs Q4953687.
- Bracket_algebra wasDerivedFrom Bracket_algebra?oldid=646373285.
- Bracket_algebra isPrimaryTopicOf Bracket_algebra.