Matches in DBpedia 2016-04 for { <http://dbpedia.org/resource/Baum–Sweet_sequence> ?p ?o }
Showing triples 1 to 30 of
30
with 100 triples per page.
- Baum–Sweet_sequence abstract "In mathematics the Baum–Sweet sequence is an infinite automatic sequence of 0s and 1s defined by the rule:bn = 1 if the binary representation of n contains no block of consecutive 0s of odd length;bn = 0 otherwise;for n ≥ 0.For example, b4 = 1 because the binary representation of 4 is 100, which only contains one block of consecutive 0s of length 2; whereas b5 = 0 because the binary representation of 5 is 101, which contains a block of consecutive 0s of length 1.Starting at n = 0, the first few terms of the Baum–Sweet sequence are:1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1 ... (sequence A086747 in OEIS)The properties of the sequence were first studied by L.E. Baum and M.M. Sweet in 1976.".
- Baum–Sweet_sequence wikiPageID "20236431".
- Baum–Sweet_sequence wikiPageLength "3304".
- Baum–Sweet_sequence wikiPageOutDegree "7".
- Baum–Sweet_sequence wikiPageRevisionID "703677984".
- Baum–Sweet_sequence wikiPageWikiLink Automatic_sequence.
- Baum–Sweet_sequence wikiPageWikiLink Cambridge_University_Press.
- Baum–Sweet_sequence wikiPageWikiLink Category:Binary_sequences.
- Baum–Sweet_sequence wikiPageWikiLink Finite-state_machine.
- Baum–Sweet_sequence wikiPageWikiLink Laurent_series.
- Baum–Sweet_sequence wikiPageWikiLink Mathematics.
- Baum–Sweet_sequence wikiPageWikiLink String_operations.
- Baum–Sweet_sequence wikiPageWikiLinkText "Baum–Sweet sequence".
- Baum–Sweet_sequence wikiPageUsesTemplate Template:Cite_book.
- Baum–Sweet_sequence wikiPageUsesTemplate Template:OEIS.
- Baum–Sweet_sequence wikiPageUsesTemplate Template:Reflist.
- Baum–Sweet_sequence wikiPageUsesTemplate Template:Reefbegin.
- Baum–Sweet_sequence wikiPageUsesTemplate Template:Rfend.
- Baum–Sweet_sequence subject Category:Binary_sequences.
- Baum–Sweet_sequence hypernym Sequence.
- Baum–Sweet_sequence type Combinatoric.
- Baum–Sweet_sequence type Redirect.
- Baum–Sweet_sequence comment "In mathematics the Baum–Sweet sequence is an infinite automatic sequence of 0s and 1s defined by the rule:bn = 1 if the binary representation of n contains no block of consecutive 0s of odd length;bn = 0 otherwise;for n ≥ 0.For example, b4 = 1 because the binary representation of 4 is 100, which only contains one block of consecutive 0s of length 2; whereas b5 = 0 because the binary representation of 5 is 101, which contains a block of consecutive 0s of length 1.Starting at n = 0, the first few terms of the Baum–Sweet sequence are:1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1 ... ".
- Baum–Sweet_sequence label "Baum–Sweet sequence".
- Baum–Sweet_sequence sameAs Q735489.
- Baum–Sweet_sequence sameAs Suite_de_Baum-Sweet.
- Baum–Sweet_sequence sameAs m.04z_8w9.
- Baum–Sweet_sequence sameAs Q735489.
- Baum–Sweet_sequence wasDerivedFrom Baum–Sweet_sequence?oldid=703677984.
- Baum–Sweet_sequence isPrimaryTopicOf Baum–Sweet_sequence.