Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Weil–Brezin_Map> ?p ?o }
Showing triples 1 to 66 of
66
with 100 triples per page.
- Weil–Brezin_Map abstract "In mathematics, the Weil–Brezin map, named after André Weil and Jonathan Brezin, is a unitary transformation that maps a Schwartz function on the real line to a smooth function on the Heisenberg manifold. The Weil–Brezin map gives a geometric interpretation of the Fourier transform, the Plancherel theorem and the Poisson summation formula. The image of Gaussian functions under the Weil–Brezin map are nil-theta functions, which are related to theta functions. The Weil–Brezin map is sometimes referred to as the Zak transform, which is widely applied in the field of physics and signal processing; however, the Weil–Brezin Map is defined via Heisenberg group geometrically, whereas there is no direct geometric or group theoretic interpretation from the Zak transform.".
- Weil–Brezin_Map wikiPageID "43178654".
- Weil–Brezin_Map wikiPageLength "12514".
- Weil–Brezin_Map wikiPageOutDegree "44".
- Weil–Brezin_Map wikiPageRevisionID "650812548".
- Weil–Brezin_Map wikiPageWikiLink André_Weil.
- Weil–Brezin_Map wikiPageWikiLink Automorphism.
- Weil–Brezin_Map wikiPageWikiLink Canonical_commutation_relation.
- Weil–Brezin_Map wikiPageWikiLink Category:Harmonic_analysis.
- Weil–Brezin_Map wikiPageWikiLink Category:Representation_theory.
- Weil–Brezin_Map wikiPageWikiLink Differential_operator.
- Weil–Brezin_Map wikiPageWikiLink Eigenspace.
- Weil–Brezin_Map wikiPageWikiLink Eigenvalues_and_eigenvectors.
- Weil–Brezin_Map wikiPageWikiLink Entire_function.
- Weil–Brezin_Map wikiPageWikiLink Finite_Fourier_transform.
- Weil–Brezin_Map wikiPageWikiLink Fourier_transform.
- Weil–Brezin_Map wikiPageWikiLink Gaussian_function.
- Weil–Brezin_Map wikiPageWikiLink Graded_ring.
- Weil–Brezin_Map wikiPageWikiLink Haar_measure.
- Weil–Brezin_Map wikiPageWikiLink Heisenberg_group.
- Weil–Brezin_Map wikiPageWikiLink Irreducible_representation.
- Weil–Brezin_Map wikiPageWikiLink Isomorphic.
- Weil–Brezin_Map wikiPageWikiLink Isomorphism.
- Weil–Brezin_Map wikiPageWikiLink Jacobi_theta_function.
- Weil–Brezin_Map wikiPageWikiLink Kernel_(linear_algebra).
- Weil–Brezin_Map wikiPageWikiLink Lie_algebra.
- Weil–Brezin_Map wikiPageWikiLink Lie_group.
- Weil–Brezin_Map wikiPageWikiLink Lie_group_action.
- Weil–Brezin_Map wikiPageWikiLink Mathematics.
- Weil–Brezin_Map wikiPageWikiLink Metaplectic_group.
- Weil–Brezin_Map wikiPageWikiLink Nilmanifold.
- Weil–Brezin_Map wikiPageWikiLink Nilpotent_Lie_algebra.
- Weil–Brezin_Map wikiPageWikiLink Nilpotent_group.
- Weil–Brezin_Map wikiPageWikiLink Oscillator_representation.
- Weil–Brezin_Map wikiPageWikiLink Physics.
- Weil–Brezin_Map wikiPageWikiLink Plancherel_theorem.
- Weil–Brezin_Map wikiPageWikiLink Pointwise_convergence.
- Weil–Brezin_Map wikiPageWikiLink Poisson_summation_formula.
- Weil–Brezin_Map wikiPageWikiLink Quotient_manifold.
- Weil–Brezin_Map wikiPageWikiLink Schwartz_function.
- Weil–Brezin_Map wikiPageWikiLink Schwartz_space.
- Weil–Brezin_Map wikiPageWikiLink Signal_processing.
- Weil–Brezin_Map wikiPageWikiLink Square-integrable_function.
- Weil–Brezin_Map wikiPageWikiLink Square_integrable_function.
- Weil–Brezin_Map wikiPageWikiLink Stone-von_Neumann_theorem.
- Weil–Brezin_Map wikiPageWikiLink Stone–von_Neumann_theorem.
- Weil–Brezin_Map wikiPageWikiLink Theta_function.
- Weil–Brezin_Map wikiPageWikiLink Theta_representation.
- Weil–Brezin_Map wikiPageWikiLink Unitarily_equivalent.
- Weil–Brezin_Map wikiPageWikiLink Unitary_equivalence.
- Weil–Brezin_Map wikiPageWikiLink Unitary_operator.
- Weil–Brezin_Map wikiPageWikiLink Unitary_representation.
- Weil–Brezin_Map wikiPageWikiLink Unitary_transformation.
- Weil–Brezin_Map wikiPageWikiLink Weil_representation.
- Weil–Brezin_Map wikiPageWikiLink Zak_transform.
- Weil–Brezin_Map wikiPageWikiLinkText "Weil–Brezin Map".
- Weil–Brezin_Map hasPhotoCollection Weil–Brezin_Map.
- Weil–Brezin_Map wikiPageUsesTemplate Template:Orphan.
- Weil–Brezin_Map wikiPageUsesTemplate Template:Reflist.
- Weil–Brezin_Map subject Category:Harmonic_analysis.
- Weil–Brezin_Map subject Category:Representation_theory.
- Weil–Brezin_Map comment "In mathematics, the Weil–Brezin map, named after André Weil and Jonathan Brezin, is a unitary transformation that maps a Schwartz function on the real line to a smooth function on the Heisenberg manifold. The Weil–Brezin map gives a geometric interpretation of the Fourier transform, the Plancherel theorem and the Poisson summation formula. The image of Gaussian functions under the Weil–Brezin map are nil-theta functions, which are related to theta functions.".
- Weil–Brezin_Map label "Weil–Brezin Map".
- Weil–Brezin_Map sameAs m.012v_5dt.
- Weil–Brezin_Map wasDerivedFrom Weil–Brezin_Map?oldid=650812548.
- Weil–Brezin_Map isPrimaryTopicOf Weil–Brezin_Map.