Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Tutte_homotopy_theorem> ?p ?o }
Showing triples 1 to 30 of
30
with 100 triples per page.
- Tutte_homotopy_theorem abstract "In mathematics, the Tutte homotopy theorem, introduced by Tutte (1958), generalises the concept of "path" from graphs to matroids, and states roughly that closed paths can be written as compositions of elementary closed paths, so that in some sense they are homotopic to the trivial closed path.".
- Tutte_homotopy_theorem wikiPageExternalLink books?id=xKPZlhqMqnQC.
- Tutte_homotopy_theorem wikiPageExternalLink books?id=xKPZlhqMqnQC&pg=PA40.
- Tutte_homotopy_theorem wikiPageExternalLink 1993243.
- Tutte_homotopy_theorem wikiPageExternalLink 1993244.
- Tutte_homotopy_theorem wikiPageID "37921130".
- Tutte_homotopy_theorem wikiPageLength "3309".
- Tutte_homotopy_theorem wikiPageOutDegree "7".
- Tutte_homotopy_theorem wikiPageRevisionID "679823152".
- Tutte_homotopy_theorem wikiPageWikiLink Cambridge_University_Press.
- Tutte_homotopy_theorem wikiPageWikiLink Category:Matroid_theory.
- Tutte_homotopy_theorem wikiPageWikiLink Graph_(mathematics).
- Tutte_homotopy_theorem wikiPageWikiLink Matroid.
- Tutte_homotopy_theorem wikiPageWikiLink Transactions_of_the_American_Mathematical_Society.
- Tutte_homotopy_theorem wikiPageWikiLinkText "Homotopy theorem".
- Tutte_homotopy_theorem wikiPageWikiLinkText "Tutte homotopy theorem".
- Tutte_homotopy_theorem wikiPageWikiLinkText "homotopy theorem".
- Tutte_homotopy_theorem hasPhotoCollection Tutte_homotopy_theorem.
- Tutte_homotopy_theorem wikiPageUsesTemplate Template:Citation.
- Tutte_homotopy_theorem wikiPageUsesTemplate Template:Harvs.
- Tutte_homotopy_theorem subject Category:Matroid_theory.
- Tutte_homotopy_theorem type Combinatoric.
- Tutte_homotopy_theorem type Thing.
- Tutte_homotopy_theorem comment "In mathematics, the Tutte homotopy theorem, introduced by Tutte (1958), generalises the concept of "path" from graphs to matroids, and states roughly that closed paths can be written as compositions of elementary closed paths, so that in some sense they are homotopic to the trivial closed path.".
- Tutte_homotopy_theorem label "Tutte homotopy theorem".
- Tutte_homotopy_theorem sameAs m.0p7723n.
- Tutte_homotopy_theorem sameAs Q7856999.
- Tutte_homotopy_theorem sameAs Q7856999.
- Tutte_homotopy_theorem wasDerivedFrom Tutte_homotopy_theorem?oldid=679823152.
- Tutte_homotopy_theorem isPrimaryTopicOf Tutte_homotopy_theorem.