Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Trémaux_tree> ?p ?o }
Showing triples 1 to 56 of
56
with 100 triples per page.
- Trémaux_tree abstract "In graph theory, a Trémaux tree of a graph G is a spanning tree of G, rooted at one of its vertices, with the property that every two adjacent vertices in G are related to each other as an ancestor and descendant in the tree. All depth-first search trees and all Hamiltonian paths are Trémaux trees.Trémaux trees are named after Charles Pierre Trémaux, a 19th-century French author who used a form of depth-first search as a strategy for solving mazes. They have also been called normal spanning trees, especially in the context of infinite graphs.".
- Trémaux_tree thumbnail Undirected_graph.svg?width=300.
- Trémaux_tree wikiPageID "30247317".
- Trémaux_tree wikiPageLength "8692".
- Trémaux_tree wikiPageOutDegree "33".
- Trémaux_tree wikiPageRevisionID "681978327".
- Trémaux_tree wikiPageWikiLink Aronszajn_tree.
- Trémaux_tree wikiPageWikiLink Bipartite_graph.
- Trémaux_tree wikiPageWikiLink Category:Graph_minor_theory.
- Trémaux_tree wikiPageWikiLink Category:Graph_theory_objects.
- Trémaux_tree wikiPageWikiLink Category:Infinite_graphs.
- Trémaux_tree wikiPageWikiLink Category:Spanning_tree.
- Trémaux_tree wikiPageWikiLink Closed_set.
- Trémaux_tree wikiPageWikiLink Complete_graph.
- Trémaux_tree wikiPageWikiLink Connected_graph.
- Trémaux_tree wikiPageWikiLink Connectivity_(graph_theory).
- Trémaux_tree wikiPageWikiLink Countable_set.
- Trémaux_tree wikiPageWikiLink Depth-first_search.
- Trémaux_tree wikiPageWikiLink End_(graph_theory).
- Trémaux_tree wikiPageWikiLink Forbidden_graph_characterization.
- Trémaux_tree wikiPageWikiLink Fraysseix–Rosenstiehl_planarity_criterion.
- Trémaux_tree wikiPageWikiLink Graph_(mathematics).
- Trémaux_tree wikiPageWikiLink Graph_minor.
- Trémaux_tree wikiPageWikiLink Graph_theory.
- Trémaux_tree wikiPageWikiLink Hamiltonian_path.
- Trémaux_tree wikiPageWikiLink Left-right_planarity_test.
- Trémaux_tree wikiPageWikiLink Maze_solving_algorithm.
- Trémaux_tree wikiPageWikiLink Metric_space.
- Trémaux_tree wikiPageWikiLink Parameterized_complexity.
- Trémaux_tree wikiPageWikiLink Planar_graph.
- Trémaux_tree wikiPageWikiLink Point_at_infinity.
- Trémaux_tree wikiPageWikiLink Simplicial_complex.
- Trémaux_tree wikiPageWikiLink Spanning_tree.
- Trémaux_tree wikiPageWikiLink Topological_space.
- Trémaux_tree wikiPageWikiLink Tree-depth.
- Trémaux_tree wikiPageWikiLink Uncountable_set.
- Trémaux_tree wikiPageWikiLink Undirected_graph.
- Trémaux_tree wikiPageWikiLink File:Undirected_graph.svg.
- Trémaux_tree wikiPageWikiLinkText "Trémaux tree".
- Trémaux_tree wikiPageWikiLinkText "depth-first search tree".
- Trémaux_tree wikiPageWikiLinkText "depth-first search trees".
- Trémaux_tree wikiPageWikiLinkText "normal spanning tree".
- Trémaux_tree hasPhotoCollection Trémaux_tree.
- Trémaux_tree wikiPageUsesTemplate Template:Reflist.
- Trémaux_tree subject Category:Graph_minor_theory.
- Trémaux_tree subject Category:Graph_theory_objects.
- Trémaux_tree subject Category:Infinite_graphs.
- Trémaux_tree subject Category:Spanning_tree.
- Trémaux_tree comment "In graph theory, a Trémaux tree of a graph G is a spanning tree of G, rooted at one of its vertices, with the property that every two adjacent vertices in G are related to each other as an ancestor and descendant in the tree. All depth-first search trees and all Hamiltonian paths are Trémaux trees.Trémaux trees are named after Charles Pierre Trémaux, a 19th-century French author who used a form of depth-first search as a strategy for solving mazes.".
- Trémaux_tree label "Trémaux tree".
- Trémaux_tree sameAs m.0g58yb9.
- Trémaux_tree sameAs Q7849146.
- Trémaux_tree sameAs Q7849146.
- Trémaux_tree wasDerivedFrom Trémaux_tree?oldid=681978327.
- Trémaux_tree depiction Undirected_graph.svg.
- Trémaux_tree isPrimaryTopicOf Trémaux_tree.