Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Tensor_product_bundle> ?p ?o }
Showing triples 1 to 37 of
37
with 100 triples per page.
- Tensor_product_bundle abstract "In differential geometry, the tensor product of vector bundles E, F is a vector bundle, denoted by E ⊗ F, whose fiber over a point x is the tensor product of vector spaces Ex ⊗ Fx.Example: If O is a trivial line bundle, then E ⊗ O = E for any E.Example: E ⊗ E* is canonically isomorphic to the endomorphism bundle End(E), where E* is the dual bundle of E.Example: A line bundle L has tensor inverse: in fact, L ⊗ L* is (isomorphic to) a trivial bundle by the previous example, as End(L) is trivial. Thus, the set of the isomorphism classes of all line bundles on the some topological space X forms an abelian group called the Picard group of X.".
- Tensor_product_bundle wikiPageExternalLink VB.pdf.
- Tensor_product_bundle wikiPageID "46418707".
- Tensor_product_bundle wikiPageLength "2066".
- Tensor_product_bundle wikiPageOutDegree "14".
- Tensor_product_bundle wikiPageRevisionID "656927099".
- Tensor_product_bundle wikiPageWikiLink Category:Differential_geometry.
- Tensor_product_bundle wikiPageWikiLink Differential_form.
- Tensor_product_bundle wikiPageWikiLink Differential_geometry.
- Tensor_product_bundle wikiPageWikiLink Dual_bundle.
- Tensor_product_bundle wikiPageWikiLink Endomorphism_bundle.
- Tensor_product_bundle wikiPageWikiLink Exterior_algebra.
- Tensor_product_bundle wikiPageWikiLink Exterior_power.
- Tensor_product_bundle wikiPageWikiLink Line_bundle.
- Tensor_product_bundle wikiPageWikiLink Picard_group.
- Tensor_product_bundle wikiPageWikiLink Symmetric_algebra.
- Tensor_product_bundle wikiPageWikiLink Symmetric_power.
- Tensor_product_bundle wikiPageWikiLink Tensor_field.
- Tensor_product_bundle wikiPageWikiLink Tensor_product.
- Tensor_product_bundle wikiPageWikiLink Tensor_product_of_modules.
- Tensor_product_bundle wikiPageWikiLink Tensor_product_of_vector_spaces.
- Tensor_product_bundle wikiPageWikiLink Vector-valued_differential_form.
- Tensor_product_bundle wikiPageWikiLink Vector_bundle.
- Tensor_product_bundle wikiPageWikiLinkText "Tensor product bundle".
- Tensor_product_bundle wikiPageWikiLinkText "tensor product bundle".
- Tensor_product_bundle hasPhotoCollection Tensor_product_bundle.
- Tensor_product_bundle wikiPageUsesTemplate Template:Geometry-stub.
- Tensor_product_bundle wikiPageUsesTemplate Template:Hat_note.
- Tensor_product_bundle wikiPageUsesTemplate Template:Reflist.
- Tensor_product_bundle subject Category:Differential_geometry.
- Tensor_product_bundle hypernym Bundle.
- Tensor_product_bundle type AnatomicalStructure.
- Tensor_product_bundle comment "In differential geometry, the tensor product of vector bundles E, F is a vector bundle, denoted by E ⊗ F, whose fiber over a point x is the tensor product of vector spaces Ex ⊗ Fx.Example: If O is a trivial line bundle, then E ⊗ O = E for any E.Example: E ⊗ E* is canonically isomorphic to the endomorphism bundle End(E), where E* is the dual bundle of E.Example: A line bundle L has tensor inverse: in fact, L ⊗ L* is (isomorphic to) a trivial bundle by the previous example, as End(L) is trivial.".
- Tensor_product_bundle label "Tensor product bundle".
- Tensor_product_bundle sameAs m.0134dpc4.
- Tensor_product_bundle wasDerivedFrom Tensor_product_bundle?oldid=656927099.
- Tensor_product_bundle isPrimaryTopicOf Tensor_product_bundle.