Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Sequentially_compact_space> ?p ?o }
Showing triples 1 to 62 of
62
with 100 triples per page.
- Sequentially_compact_space abstract "In mathematics, a topological space is sequentially compact if every infinite sequence has a convergent subsequence. For general topological spaces, the notions of compactness and sequential compactness are not equivalent; they are, however, equivalent for metric spaces. A metric space X is sequentially compact if every sequence has a convergent subsequence which converges to a point in X.".
- Sequentially_compact_space wikiPageID "8293820".
- Sequentially_compact_space wikiPageLength "2887".
- Sequentially_compact_space wikiPageOutDegree "30".
- Sequentially_compact_space wikiPageRevisionID "674779422".
- Sequentially_compact_space wikiPageWikiLink Bolzano–Weierstrass_theorem.
- Sequentially_compact_space wikiPageWikiLink Category:Compactness_(mathematics).
- Sequentially_compact_space wikiPageWikiLink Closed_unit_interval.
- Sequentially_compact_space wikiPageWikiLink Compact_space.
- Sequentially_compact_space wikiPageWikiLink Compactness.
- Sequentially_compact_space wikiPageWikiLink Countably_compact_space.
- Sequentially_compact_space wikiPageWikiLink Counterexamples_in_Topology.
- Sequentially_compact_space wikiPageWikiLink Cover_(topology).
- Sequentially_compact_space wikiPageWikiLink First_uncountable_ordinal.
- Sequentially_compact_space wikiPageWikiLink Infinite_sequence.
- Sequentially_compact_space wikiPageWikiLink J._Arthur_Seebach,_Jr..
- Sequentially_compact_space wikiPageWikiLink James_Munkres.
- Sequentially_compact_space wikiPageWikiLink Limit_of_a_sequence.
- Sequentially_compact_space wikiPageWikiLink Limit_point.
- Sequentially_compact_space wikiPageWikiLink Limit_point_compact.
- Sequentially_compact_space wikiPageWikiLink Lynn_Arthur_Steen.
- Sequentially_compact_space wikiPageWikiLink Lynn_Steen.
- Sequentially_compact_space wikiPageWikiLink Mathematics.
- Sequentially_compact_space wikiPageWikiLink Metric_space.
- Sequentially_compact_space wikiPageWikiLink Metric_spaces.
- Sequentially_compact_space wikiPageWikiLink Natural_number.
- Sequentially_compact_space wikiPageWikiLink Open_cover.
- Sequentially_compact_space wikiPageWikiLink Order_topology.
- Sequentially_compact_space wikiPageWikiLink Prentice_Hall.
- Sequentially_compact_space wikiPageWikiLink Product_topology.
- Sequentially_compact_space wikiPageWikiLink Real_coordinate_space.
- Sequentially_compact_space wikiPageWikiLink Real_number.
- Sequentially_compact_space wikiPageWikiLink Sequence.
- Sequentially_compact_space wikiPageWikiLink Sequential_space.
- Sequentially_compact_space wikiPageWikiLink Standard_topology.
- Sequentially_compact_space wikiPageWikiLink Subsequence.
- Sequentially_compact_space wikiPageWikiLink Topological_space.
- Sequentially_compact_space wikiPageWikiLink Unit_interval.
- Sequentially_compact_space wikiPageWikiLinkText "Sequential compactness".
- Sequentially_compact_space wikiPageWikiLinkText "Sequentially compact space".
- Sequentially_compact_space wikiPageWikiLinkText "sequential compactness".
- Sequentially_compact_space wikiPageWikiLinkText "sequentially compact".
- Sequentially_compact_space hasPhotoCollection Sequentially_compact_space.
- Sequentially_compact_space wikiPageUsesTemplate Template:=.
- Sequentially_compact_space wikiPageUsesTemplate Template:Cite_book.
- Sequentially_compact_space wikiPageUsesTemplate Template:Reflist.
- Sequentially_compact_space wikiPageUsesTemplate Template:Topology-stub.
- Sequentially_compact_space subject Category:Compactness_(mathematics).
- Sequentially_compact_space type Property.
- Sequentially_compact_space comment "In mathematics, a topological space is sequentially compact if every infinite sequence has a convergent subsequence. For general topological spaces, the notions of compactness and sequential compactness are not equivalent; they are, however, equivalent for metric spaces. A metric space X is sequentially compact if every sequence has a convergent subsequence which converges to a point in X.".
- Sequentially_compact_space label "Sequentially compact space".
- Sequentially_compact_space sameAs Folgenkompaktheit.
- Sequentially_compact_space sameAs Compacité_séquentielle.
- Sequentially_compact_space sameAs 点列コンパクト空間.
- Sequentially_compact_space sameAs 점렬_콤팩트_공간.
- Sequentially_compact_space sameAs Przestrzeń_ciągowo_zwarta.
- Sequentially_compact_space sameAs Espaço_sequencialmente_compacto.
- Sequentially_compact_space sameAs m.04czc8_.
- Sequentially_compact_space sameAs Q1135427.
- Sequentially_compact_space sameAs Q1135427.
- Sequentially_compact_space wasDerivedFrom Sequentially_compact_space?oldid=674779422.
- Sequentially_compact_space isPrimaryTopicOf Sequentially_compact_space.