Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Second_Hardy–Littlewood_conjecture> ?p ?o }
Showing triples 1 to 40 of
40
with 100 triples per page.
- Second_Hardy–Littlewood_conjecture abstract "In number theory, the second Hardy–Littlewood conjecture concerns the number of primes in intervals. If π(x) is the number of primes up to and including x then the conjecture states thatπ(x + y) ≤ π(x) + π(y)for x, y ≥ 2.This means that the number of primes from x + 1 to x + y is always less than or equal to the number of primes from 1 to y. This is probably false in general as it is inconsistent with the more likely first Hardy–Littlewood conjecture on prime k-tuples, but the first violation is likely to occur for very large values of x. For example, an admissible k-tuple (or prime constellation) of 447 primes can be found in an interval of y = 3159 integers, while π(3159) = 446. If the first Hardy–Littlewood conjecture holds, then the first such k-tuple is expected for x greater than 1.5 × 10174 but less than 2.2 × 101198.".
- Second_Hardy–Littlewood_conjecture wikiPageExternalLink apc.html.
- Second_Hardy–Littlewood_conjecture wikiPageExternalLink k-tuples.html.
- Second_Hardy–Littlewood_conjecture wikiPageID "361598".
- Second_Hardy–Littlewood_conjecture wikiPageLength "2443".
- Second_Hardy–Littlewood_conjecture wikiPageOutDegree "9".
- Second_Hardy–Littlewood_conjecture wikiPageRevisionID "679335851".
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Category:Analytic_number_theory.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Category:Conjectures_about_prime_numbers.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink First_Hardy–Littlewood_conjecture.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink G._H._Hardy.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Interval_(mathematics).
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink John_Edensor_Littlewood.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Number_theory.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Prime_constellation.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Prime_k-tuple.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Prime_number.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLink Twin_prime.
- Second_Hardy–Littlewood_conjecture wikiPageWikiLinkText "Second Hardy–Littlewood conjecture".
- Second_Hardy–Littlewood_conjecture wikiPageWikiLinkText "second Hardy–Littlewood conjecture".
- Second_Hardy–Littlewood_conjecture hasPhotoCollection Second_Hardy–Littlewood_conjecture.
- Second_Hardy–Littlewood_conjecture wikiPageUsesTemplate Template:According_to_whom.
- Second_Hardy–Littlewood_conjecture wikiPageUsesTemplate Template:Cite_journal.
- Second_Hardy–Littlewood_conjecture wikiPageUsesTemplate Template:Cite_web.
- Second_Hardy–Littlewood_conjecture wikiPageUsesTemplate Template:Numtheory-stub.
- Second_Hardy–Littlewood_conjecture wikiPageUsesTemplate Template:Prime_number_conjectures.
- Second_Hardy–Littlewood_conjecture subject Category:Analytic_number_theory.
- Second_Hardy–Littlewood_conjecture subject Category:Conjectures_about_prime_numbers.
- Second_Hardy–Littlewood_conjecture comment "In number theory, the second Hardy–Littlewood conjecture concerns the number of primes in intervals. If π(x) is the number of primes up to and including x then the conjecture states thatπ(x + y) ≤ π(x) + π(y)for x, y ≥ 2.This means that the number of primes from x + 1 to x + y is always less than or equal to the number of primes from 1 to y.".
- Second_Hardy–Littlewood_conjecture label "Second Hardy–Littlewood conjecture".
- Second_Hardy–Littlewood_conjecture sameAs Dua_konjekto_de_Hardy-Littlewood.
- Second_Hardy–Littlewood_conjecture sameAs Seconde_conjecture_de_Hardy-Littlewood.
- Second_Hardy–Littlewood_conjecture sameAs השערת_הארדי-ליטלווד_השנייה.
- Second_Hardy–Littlewood_conjecture sameAs m.01_hqj.
- Second_Hardy–Littlewood_conjecture sameAs Вторая_гипотеза_Харди_—_Литлвуда.
- Second_Hardy–Littlewood_conjecture sameAs Hardy–Littlewoods_andra_förmodan.
- Second_Hardy–Littlewood_conjecture sameAs Q2920423.
- Second_Hardy–Littlewood_conjecture sameAs Q2920423.
- Second_Hardy–Littlewood_conjecture wasDerivedFrom Second_Hardy–Littlewood_conjecture?oldid=679335851.
- Second_Hardy–Littlewood_conjecture isPrimaryTopicOf Second_Hardy–Littlewood_conjecture.