Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Sampling_in_order> ?p ?o }
Showing triples 1 to 28 of
28
with 100 triples per page.
- Sampling_in_order abstract "In statistics, some Monte Carlo methods require independent observations in a sample to be drawn from a one-dimensional distribution in sorted order. In other words, all n order statistics are needed from the n observations in a sample. The naive method performs a sort and takes O(n log n) time. There are also O(n) algorithms which are better suited for large n. The special case of drawing n sorted observations from the uniform distribution on [0,1] is equivalent to drawing from the uniform distribution on an n-dimensional simplex; this task is a part of sequential importance resampling.".
- Sampling_in_order wikiPageExternalLink 2450.
- Sampling_in_order wikiPageExternalLink 2347997.
- Sampling_in_order wikiPageID "41559308".
- Sampling_in_order wikiPageLength "1796".
- Sampling_in_order wikiPageOutDegree "9".
- Sampling_in_order wikiPageRevisionID "680263380".
- Sampling_in_order wikiPageWikiLink Category:Monte_Carlo_methods.
- Sampling_in_order wikiPageWikiLink Journal_of_the_Royal_Statistical_Society.
- Sampling_in_order wikiPageWikiLink Monte_Carlo_method.
- Sampling_in_order wikiPageWikiLink Order_statistic.
- Sampling_in_order wikiPageWikiLink Particle_filter.
- Sampling_in_order wikiPageWikiLink Sequential_importance_resampling.
- Sampling_in_order wikiPageWikiLink Simplex.
- Sampling_in_order wikiPageWikiLink Sorting_algorithm.
- Sampling_in_order wikiPageWikiLink Statistics.
- Sampling_in_order wikiPageWikiLink Uniform_distribution_(continuous).
- Sampling_in_order hasPhotoCollection Sampling_in_order.
- Sampling_in_order wikiPageUsesTemplate Template:Citation.
- Sampling_in_order wikiPageUsesTemplate Template:Statistics-stub.
- Sampling_in_order subject Category:Monte_Carlo_methods.
- Sampling_in_order comment "In statistics, some Monte Carlo methods require independent observations in a sample to be drawn from a one-dimensional distribution in sorted order. In other words, all n order statistics are needed from the n observations in a sample. The naive method performs a sort and takes O(n log n) time. There are also O(n) algorithms which are better suited for large n.".
- Sampling_in_order label "Sampling in order".
- Sampling_in_order sameAs m.0_1g5rf.
- Sampling_in_order sameAs Q17084099.
- Sampling_in_order sameAs Q17084099.
- Sampling_in_order wasDerivedFrom Sampling_in_order?oldid=680263380.
- Sampling_in_order isPrimaryTopicOf Sampling_in_order.