Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Q-Krawtchouk_polynomials> ?p ?o }
Showing triples 1 to 67 of
67
with 100 triples per page.
- Q-Krawtchouk_polynomials abstract "In mathematics, the q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.Stanton (1981) showed that the q-Krawtchouk polynomials are spherical functions for 3 different Chevalley groups over finite fields, and Koornwinder (1989) showed that they are related to representations of the quantum group SU(2).".
- Q-Krawtchouk_polynomials wikiPageID "32848718".
- Q-Krawtchouk_polynomials wikiPageLength "2670".
- Q-Krawtchouk_polynomials wikiPageOutDegree "11".
- Q-Krawtchouk_polynomials wikiPageRevisionID "448547379".
- Q-Krawtchouk_polynomials wikiPageWikiLink Askey_scheme.
- Q-Krawtchouk_polynomials wikiPageWikiLink Basic_hypergeometric_function.
- Q-Krawtchouk_polynomials wikiPageWikiLink Basic_hypergeometric_series.
- Q-Krawtchouk_polynomials wikiPageWikiLink Cambridge_University_Press.
- Q-Krawtchouk_polynomials wikiPageWikiLink Category:Orthogonal_polynomials.
- Q-Krawtchouk_polynomials wikiPageWikiLink Category:Q-analogs.
- Q-Krawtchouk_polynomials wikiPageWikiLink Category:Special_hypergeometric_functions.
- Q-Krawtchouk_polynomials wikiPageWikiLink Chevalley_group.
- Q-Krawtchouk_polynomials wikiPageWikiLink Group_of_Lie_type.
- Q-Krawtchouk_polynomials wikiPageWikiLink Orthogonal_polynomials.
- Q-Krawtchouk_polynomials wikiPageWikiLink Pochhammer_symbol.
- Q-Krawtchouk_polynomials wikiPageWikiLink Springer-Verlag.
- Q-Krawtchouk_polynomials wikiPageWikiLink Springer_Science+Business_Media.
- Q-Krawtchouk_polynomials wikiPageWikiLinkText "''q''-Krawtchouk polynomials".
- Q-Krawtchouk_polynomials wikiPageWikiLinkText "q-Krawtchouk".
- Q-Krawtchouk_polynomials doi "10.1007".
- Q-Krawtchouk_polynomials first "Peter A.".
- Q-Krawtchouk_polynomials first "René F.".
- Q-Krawtchouk_polynomials first "Roderick S. C.".
- Q-Krawtchouk_polynomials first "Roelof".
- Q-Krawtchouk_polynomials first "Tom H.".
- Q-Krawtchouk_polynomials hasPhotoCollection Q-Krawtchouk_polynomials.
- Q-Krawtchouk_polynomials id "18".
- Q-Krawtchouk_polynomials isbn "978".
- Q-Krawtchouk_polynomials last "Koekoek".
- Q-Krawtchouk_polynomials last "Koornwinder".
- Q-Krawtchouk_polynomials last "Lesky".
- Q-Krawtchouk_polynomials last "Swarttouw".
- Q-Krawtchouk_polynomials last "Wong".
- Q-Krawtchouk_polynomials loc "14".
- Q-Krawtchouk_polynomials location "Berlin, New York".
- Q-Krawtchouk_polynomials mr "2656096".
- Q-Krawtchouk_polynomials publisher Springer-Verlag.
- Q-Krawtchouk_polynomials publisher Springer_Science+Business_Media.
- Q-Krawtchouk_polynomials series "Springer Monographs in Mathematics".
- Q-Krawtchouk_polynomials title "Hypergeometric orthogonal polynomials and their q-analogues".
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:Citation.
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:Dlmf.
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:Empty_section.
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:Harvs.
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:Harvtxt.
- Q-Krawtchouk_polynomials wikiPageUsesTemplate Template:See_also.
- Q-Krawtchouk_polynomials year "2010".
- Q-Krawtchouk_polynomials subject Category:Orthogonal_polynomials.
- Q-Krawtchouk_polynomials subject Category:Q-analogs.
- Q-Krawtchouk_polynomials subject Category:Special_hypergeometric_functions.
- Q-Krawtchouk_polynomials hypernym Family.
- Q-Krawtchouk_polynomials type Article.
- Q-Krawtchouk_polynomials type Article.
- Q-Krawtchouk_polynomials type Combinatoric.
- Q-Krawtchouk_polynomials type Function.
- Q-Krawtchouk_polynomials type Polynomial.
- Q-Krawtchouk_polynomials type Thing.
- Q-Krawtchouk_polynomials comment "In mathematics, the q-Krawtchouk polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.Stanton (1981) showed that the q-Krawtchouk polynomials are spherical functions for 3 different Chevalley groups over finite fields, and Koornwinder (1989) showed that they are related to representations of the quantum group SU(2).".
- Q-Krawtchouk_polynomials label "Q-Krawtchouk polynomials".
- Q-Krawtchouk_polynomials seeAlso Affine_q-Krawtchouk_polynomials.
- Q-Krawtchouk_polynomials sameAs m.0h3q3n7.
- Q-Krawtchouk_polynomials sameAs Q7265271.
- Q-Krawtchouk_polynomials sameAs Q7265271.
- Q-Krawtchouk_polynomials sameAs Q克拉夫楚克多项式.
- Q-Krawtchouk_polynomials wasDerivedFrom Q-Krawtchouk_polynomials?oldid=448547379.
- Q-Krawtchouk_polynomials isPrimaryTopicOf Q-Krawtchouk_polynomials.