Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Pre-abelian_category> ?p ?o }
Showing triples 1 to 83 of
83
with 100 triples per page.
- Pre-abelian_category abstract "In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.Spelled out in more detail, this means that a category C is pre-abelian if: C is preadditive, that is enriched over the monoidal category of abelian groups; C has all biproducts, which are both finite products and finite coproducts; given any morphism f: A → B in C, the equaliser of f and the zero morphism from A to B exists (this is the kernel), as does the coequaliser (this is the cokernel).Note that the zero morphism in item 3 can be identified as the identity element of the hom-set Hom(A,B), which is an abelian group by item 1; or as the unique morphism A → O → B, where O is a zero object, guaranteed to exist by item 2.".
- Pre-abelian_category wikiPageID "62775".
- Pre-abelian_category wikiPageLength "6912".
- Pre-abelian_category wikiPageOutDegree "70".
- Pre-abelian_category wikiPageRevisionID "618227304".
- Pre-abelian_category wikiPageWikiLink Abelian_categories.
- Pre-abelian_category wikiPageWikiLink Abelian_category.
- Pre-abelian_category wikiPageWikiLink Abelian_group.
- Pre-abelian_category wikiPageWikiLink Additive_category.
- Pre-abelian_category wikiPageWikiLink Additive_functor.
- Pre-abelian_category wikiPageWikiLink Biproduct.
- Pre-abelian_category wikiPageWikiLink Category:Additive_categories.
- Pre-abelian_category wikiPageWikiLink Category_theory.
- Pre-abelian_category wikiPageWikiLink Closed_monoidal_category.
- Pre-abelian_category wikiPageWikiLink Closed_set.
- Pre-abelian_category wikiPageWikiLink Closure_(topology).
- Pre-abelian_category wikiPageWikiLink Coequaliser.
- Pre-abelian_category wikiPageWikiLink Coequalizer.
- Pre-abelian_category wikiPageWikiLink Coimage.
- Pre-abelian_category wikiPageWikiLink Cokernel.
- Pre-abelian_category wikiPageWikiLink Cokernel_(category_theory).
- Pre-abelian_category wikiPageWikiLink Colimit.
- Pre-abelian_category wikiPageWikiLink Complete_category.
- Pre-abelian_category wikiPageWikiLink Coproduct.
- Pre-abelian_category wikiPageWikiLink Direct_sum_of_groups.
- Pre-abelian_category wikiPageWikiLink Enriched_category.
- Pre-abelian_category wikiPageWikiLink Epimorphism.
- Pre-abelian_category wikiPageWikiLink Equaliser_(mathematics).
- Pre-abelian_category wikiPageWikiLink Equalizer_(mathematics).
- Pre-abelian_category wikiPageWikiLink Exact_functor.
- Pre-abelian_category wikiPageWikiLink Exact_sequence.
- Pre-abelian_category wikiPageWikiLink Field_(mathematics).
- Pre-abelian_category wikiPageWikiLink Finite_set.
- Pre-abelian_category wikiPageWikiLink Finitely_complete_category.
- Pre-abelian_category wikiPageWikiLink Function_(mathematics).
- Pre-abelian_category wikiPageWikiLink Group_homomorphism.
- Pre-abelian_category wikiPageWikiLink Hausdorff_space.
- Pre-abelian_category wikiPageWikiLink Hom-set.
- Pre-abelian_category wikiPageWikiLink Identity_element.
- Pre-abelian_category wikiPageWikiLink If_and_only_if.
- Pre-abelian_category wikiPageWikiLink Image_(category_theory).
- Pre-abelian_category wikiPageWikiLink Initial_and_terminal_objects.
- Pre-abelian_category wikiPageWikiLink Isomorphic.
- Pre-abelian_category wikiPageWikiLink Isomorphism.
- Pre-abelian_category wikiPageWikiLink Kernel_(algebra).
- Pre-abelian_category wikiPageWikiLink Kernel_(category_theory).
- Pre-abelian_category wikiPageWikiLink Limit_(category_theory).
- Pre-abelian_category wikiPageWikiLink Mathematics.
- Pre-abelian_category wikiPageWikiLink Module_(mathematics).
- Pre-abelian_category wikiPageWikiLink Monoidal_category.
- Pre-abelian_category wikiPageWikiLink Monomorphism.
- Pre-abelian_category wikiPageWikiLink Morphism.
- Pre-abelian_category wikiPageWikiLink Nicolae_Popescu.
- Pre-abelian_category wikiPageWikiLink Normal_monomorphism.
- Pre-abelian_category wikiPageWikiLink Normal_morphism.
- Pre-abelian_category wikiPageWikiLink Preadditive_categories.
- Pre-abelian_category wikiPageWikiLink Preadditive_category.
- Pre-abelian_category wikiPageWikiLink Product_(category_theory).
- Pre-abelian_category wikiPageWikiLink Range_(function).
- Pre-abelian_category wikiPageWikiLink Range_(mathematics).
- Pre-abelian_category wikiPageWikiLink Ring_(mathematics).
- Pre-abelian_category wikiPageWikiLink Set_(mathematics).
- Pre-abelian_category wikiPageWikiLink Topological_group.
- Pre-abelian_category wikiPageWikiLink Universal_quantification.
- Pre-abelian_category wikiPageWikiLink Vector_space.
- Pre-abelian_category wikiPageWikiLink Zero_morphism.
- Pre-abelian_category wikiPageWikiLink Zero_object.
- Pre-abelian_category wikiPageWikiLinkText "Pre-abelian category".
- Pre-abelian_category wikiPageWikiLinkText "pre".
- Pre-abelian_category wikiPageWikiLinkText "pre-abelian category".
- Pre-abelian_category wikiPageWikiLinkText "pre-abelian".
- Pre-abelian_category hasPhotoCollection Pre-abelian_category.
- Pre-abelian_category subject Category:Additive_categories.
- Pre-abelian_category hypernym Category.
- Pre-abelian_category type TelevisionStation.
- Pre-abelian_category comment "In mathematics, specifically in category theory, a pre-abelian category is an additive category that has all kernels and cokernels.Spelled out in more detail, this means that a category C is pre-abelian if: C is preadditive, that is enriched over the monoidal category of abelian groups; C has all biproducts, which are both finite products and finite coproducts; given any morphism f: A → B in C, the equaliser of f and the zero morphism from A to B exists (this is the kernel), as does the coequaliser (this is the cokernel).Note that the zero morphism in item 3 can be identified as the identity element of the hom-set Hom(A,B), which is an abelian group by item 1; or as the unique morphism A → O → B, where O is a zero object, guaranteed to exist by item 2.".
- Pre-abelian_category label "Pre-abelian category".
- Pre-abelian_category sameAs Categoria_pré-abeliana.
- Pre-abelian_category sameAs m.0gyt1.
- Pre-abelian_category sameAs Q7239192.
- Pre-abelian_category sameAs Q7239192.
- Pre-abelian_category wasDerivedFrom Pre-abelian_category?oldid=618227304.
- Pre-abelian_category isPrimaryTopicOf Pre-abelian_category.