Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Perron_number> ?p ?o }
Showing triples 1 to 46 of
46
with 100 triples per page.
- Perron_number abstract "In mathematics, a Perron number is an algebraic integer α which is real and exceeds 1, but such that its conjugate elements, other than its complex conjugate, are all less than α in absolute value.Perron numbers are named after Oskar Perron; the Perron–Frobenius theorem asserts that, for a real square matrix with positive algebraic coefficients whose largest eigenvalue is greater than one, this eigenvalue is a Perron number. As a closely related case, the Perron number of a graph is defined to be the spectral radius of its adjacency matrix.Any Pisot number or Salem number is a Perron number, as is the Mahler measure of a monic integer polynomial.".
- Perron_number wikiPageID "5362893".
- Perron_number wikiPageLength "1205".
- Perron_number wikiPageOutDegree "17".
- Perron_number wikiPageRevisionID "682886424".
- Perron_number wikiPageWikiLink Absolute_value.
- Perron_number wikiPageWikiLink Adjacency_matrix.
- Perron_number wikiPageWikiLink Algebraic_integer.
- Perron_number wikiPageWikiLink Category:Algebraic_numbers.
- Perron_number wikiPageWikiLink Category:Graph_invariants.
- Perron_number wikiPageWikiLink Complex_conjugate.
- Perron_number wikiPageWikiLink Conjugate_element.
- Perron_number wikiPageWikiLink Conjugate_element_(field_theory).
- Perron_number wikiPageWikiLink Graph_(mathematics).
- Perron_number wikiPageWikiLink Mahler_measure.
- Perron_number wikiPageWikiLink Mathematics.
- Perron_number wikiPageWikiLink Monic_polynomial.
- Perron_number wikiPageWikiLink Oskar_Perron.
- Perron_number wikiPageWikiLink Perron–Frobenius_theorem.
- Perron_number wikiPageWikiLink Pisot_number.
- Perron_number wikiPageWikiLink Pisot–Vijayaraghavan_number.
- Perron_number wikiPageWikiLink Salem_number.
- Perron_number wikiPageWikiLink Spectral_radius.
- Perron_number wikiPageWikiLink Springer_Science+Business_Media.
- Perron_number wikiPageWikiLink Springer_Verlag.
- Perron_number wikiPageWikiLinkText "Perron number".
- Perron_number hasPhotoCollection Perron_number.
- Perron_number wikiPageUsesTemplate Template:Algebraic_numbers.
- Perron_number wikiPageUsesTemplate Template:Cite_book.
- Perron_number wikiPageUsesTemplate Template:Example_needed.
- Perron_number wikiPageUsesTemplate Template:Numtheory-stub.
- Perron_number subject Category:Algebraic_numbers.
- Perron_number subject Category:Graph_invariants.
- Perron_number hypernym u0391.
- Perron_number type Article.
- Perron_number type Drug.
- Perron_number type Article.
- Perron_number type Invariant.
- Perron_number type Object.
- Perron_number comment "In mathematics, a Perron number is an algebraic integer α which is real and exceeds 1, but such that its conjugate elements, other than its complex conjugate, are all less than α in absolute value.Perron numbers are named after Oskar Perron; the Perron–Frobenius theorem asserts that, for a real square matrix with positive algebraic coefficients whose largest eigenvalue is greater than one, this eigenvalue is a Perron number.".
- Perron_number label "Perron number".
- Perron_number sameAs m.0dhg8v.
- Perron_number sameAs Q7169663.
- Perron_number sameAs Q7169663.
- Perron_number wasDerivedFrom Perron_number?oldid=682886424.
- Perron_number isPrimaryTopicOf Perron_number.