Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/P-adic_modular_form> ?p ?o }
Showing triples 1 to 27 of
27
with 100 triples per page.
- P-adic_modular_form abstract "In mathematics, a p-adic modular form is a p-adic analog of a modular form, with coefficients that are p-adic numbers rather than complex numbers. Serre (1973) introduced p-adic modular forms as limits of ordinary modular forms, and Katz (1973) shortly afterwards gave a geometric and more general definition. Katz's p-adic modular forms include as special cases classical p-adic modular forms, which are more or less p-adic linear combinations of the usual "classical" modular forms, and overconvergent p-adic modular forms, which in turn include Hida's ordinary modular forms as special cases.".
- P-adic_modular_form wikiPageExternalLink s002220050051.
- P-adic_modular_form wikiPageID "37776049".
- P-adic_modular_form wikiPageLength "4685".
- P-adic_modular_form wikiPageOutDegree "8".
- P-adic_modular_form wikiPageRevisionID "646881992".
- P-adic_modular_form wikiPageWikiLink Category:Modular_forms.
- P-adic_modular_form wikiPageWikiLink Eisenstein_series.
- P-adic_modular_form wikiPageWikiLink Inventiones_Mathematicae.
- P-adic_modular_form wikiPageWikiLink Modular_form.
- P-adic_modular_form wikiPageWikiLink Springer-Verlag.
- P-adic_modular_form wikiPageWikiLink Springer_Science+Business_Media.
- P-adic_modular_form wikiPageWikiLinkText "p-adic modular form".
- P-adic_modular_form hasPhotoCollection P-adic_modular_form.
- P-adic_modular_form wikiPageUsesTemplate Template:Citation.
- P-adic_modular_form wikiPageUsesTemplate Template:Harvtxt.
- P-adic_modular_form wikiPageUsesTemplate Template:Main.
- P-adic_modular_form subject Category:Modular_forms.
- P-adic_modular_form hypernym Analog.
- P-adic_modular_form type Drug.
- P-adic_modular_form comment "In mathematics, a p-adic modular form is a p-adic analog of a modular form, with coefficients that are p-adic numbers rather than complex numbers. Serre (1973) introduced p-adic modular forms as limits of ordinary modular forms, and Katz (1973) shortly afterwards gave a geometric and more general definition.".
- P-adic_modular_form label "P-adic modular form".
- P-adic_modular_form sameAs m.0nhh2jv.
- P-adic_modular_form sameAs Q7116918.
- P-adic_modular_form sameAs Q7116918.
- P-adic_modular_form wasDerivedFrom P-adic_modular_form?oldid=646881992.
- P-adic_modular_form isPrimaryTopicOf P-adic_modular_form.