Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Pólya_enumeration_theorem> ?p ?o }
Showing triples 1 to 71 of
71
with 100 triples per page.
- Pólya_enumeration_theorem abstract "The Pólya enumeration theorem, also known as the Redfield–Pólya Theorem, is a theorem in combinatorics that both follows and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by John Howard Redfield in 1927. In 1937 it was independently rediscovered by George Pólya, who then greatly popularized the result by applying it to many counting problems, in particular to the enumeration of chemical compounds.The Pólya enumeration theorem can also be incorporated into symbolic combinatorics and the theory of combinatorial species.".
- Pólya_enumeration_theorem wikiPageExternalLink Polya.html.
- Pólya_enumeration_theorem wikiPageExternalLink ApplyingThePolyaBurnsideEnumerationTheorem.
- Pólya_enumeration_theorem wikiPageExternalLink collier.pdf.
- Pólya_enumeration_theorem wikiPageExternalLink 9021012252111875.
- Pólya_enumeration_theorem wikiPageID "4396962".
- Pólya_enumeration_theorem wikiPageLength "13232".
- Pólya_enumeration_theorem wikiPageOutDegree "42".
- Pólya_enumeration_theorem wikiPageRevisionID "681589404".
- Pólya_enumeration_theorem wikiPageWikiLink Acta_Mathematica.
- Pólya_enumeration_theorem wikiPageWikiLink American_Journal_of_Mathematics.
- Pólya_enumeration_theorem wikiPageWikiLink Analytic_combinatorics.
- Pólya_enumeration_theorem wikiPageWikiLink Bracelet_(combinatorics).
- Pólya_enumeration_theorem wikiPageWikiLink Burnsides_lemma.
- Pólya_enumeration_theorem wikiPageWikiLink Category:Articles_containing_proofs.
- Pólya_enumeration_theorem wikiPageWikiLink Category:Enumerative_combinatorics.
- Pólya_enumeration_theorem wikiPageWikiLink Category:Graph_enumeration.
- Pólya_enumeration_theorem wikiPageWikiLink Category:Theorems_in_combinatorics.
- Pólya_enumeration_theorem wikiPageWikiLink Chemical_compound.
- Pólya_enumeration_theorem wikiPageWikiLink Combinatorial_species.
- Pólya_enumeration_theorem wikiPageWikiLink Combinatorics.
- Pólya_enumeration_theorem wikiPageWikiLink Cycle_index.
- Pólya_enumeration_theorem wikiPageWikiLink Cyclic_group.
- Pólya_enumeration_theorem wikiPageWikiLink Dihedral_group.
- Pólya_enumeration_theorem wikiPageWikiLink File:AllGraphsOnThreeVertices.png.
- Pólya_enumeration_theorem wikiPageWikiLink File:NonisomorphicGraphsOnFourVertices.png.
- Pólya_enumeration_theorem wikiPageWikiLink File:NonisomorphicGraphsOnThreeVertices.png.
- Pólya_enumeration_theorem wikiPageWikiLink File:TernaryTrees.png.
- Pólya_enumeration_theorem wikiPageWikiLink Frank_Harary.
- Pólya_enumeration_theorem wikiPageWikiLink Generating_function.
- Pólya_enumeration_theorem wikiPageWikiLink George_Pólya.
- Pólya_enumeration_theorem wikiPageWikiLink Group_action.
- Pólya_enumeration_theorem wikiPageWikiLink John_Howard_Redfield.
- Pólya_enumeration_theorem wikiPageWikiLink Necklace_(combinatorics).
- Pólya_enumeration_theorem wikiPageWikiLink Orbit_(group_theory).
- Pólya_enumeration_theorem wikiPageWikiLink Permutation.
- Pólya_enumeration_theorem wikiPageWikiLink Reflection_symmetry.
- Pólya_enumeration_theorem wikiPageWikiLink Rotational_symmetry.
- Pólya_enumeration_theorem wikiPageWikiLink Springer-Verlag.
- Pólya_enumeration_theorem wikiPageWikiLink Springer_Science+Business_Media.
- Pólya_enumeration_theorem wikiPageWikiLink Symbolic_combinatorics.
- Pólya_enumeration_theorem wikiPageWikiLink Symmetric_group.
- Pólya_enumeration_theorem wikiPageWikiLink Symmetry_group.
- Pólya_enumeration_theorem wikiPageWikiLink The_Wolfram_Demonstrations_Project.
- Pólya_enumeration_theorem wikiPageWikiLink Tree_(graph_theory).
- Pólya_enumeration_theorem wikiPageWikiLink Wolfram_Demonstrations_Project.
- Pólya_enumeration_theorem wikiPageWikiLinkText "Pólya enumeration theorem".
- Pólya_enumeration_theorem hasPhotoCollection Pólya_enumeration_theorem.
- Pólya_enumeration_theorem title "Polya Enumeration Theorem".
- Pólya_enumeration_theorem urlname "PolyaEnumerationTheorem".
- Pólya_enumeration_theorem wikiPageUsesTemplate Template:About.
- Pólya_enumeration_theorem wikiPageUsesTemplate Template:Cite_book.
- Pólya_enumeration_theorem wikiPageUsesTemplate Template:Cite_journal.
- Pólya_enumeration_theorem wikiPageUsesTemplate Template:MathWorld.
- Pólya_enumeration_theorem wikiPageUsesTemplate Template:OEIS.
- Pólya_enumeration_theorem subject Category:Articles_containing_proofs.
- Pólya_enumeration_theorem subject Category:Enumerative_combinatorics.
- Pólya_enumeration_theorem subject Category:Graph_enumeration.
- Pólya_enumeration_theorem subject Category:Theorems_in_combinatorics.
- Pólya_enumeration_theorem comment "The Pólya enumeration theorem, also known as the Redfield–Pólya Theorem, is a theorem in combinatorics that both follows and ultimately generalizes Burnside's lemma on the number of orbits of a group action on a set. The theorem was first published by John Howard Redfield in 1927.".
- Pólya_enumeration_theorem label "Pólya enumeration theorem".
- Pólya_enumeration_theorem sameAs Théorème_de_dénombrement_de_Pólya.
- Pólya_enumeration_theorem sameAs 포여_열거_정리.
- Pólya_enumeration_theorem sameAs m.0c0081.
- Pólya_enumeration_theorem sameAs Теорема_Редфилда_—_Пойа.
- Pólya_enumeration_theorem sameAs போல்யா_எண்ணெடுப்புத்_தேற்றம்.
- Pólya_enumeration_theorem sameAs Q1037559.
- Pólya_enumeration_theorem sameAs Q1037559.
- Pólya_enumeration_theorem sameAs 波利亞計數定理.
- Pólya_enumeration_theorem wasDerivedFrom Pólya_enumeration_theorem?oldid=681589404.
- Pólya_enumeration_theorem isPrimaryTopicOf Pólya_enumeration_theorem.