Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Naimark_equivalence> ?p ?o }
Showing triples 1 to 32 of
32
with 100 triples per page.
- Naimark_equivalence abstract "In mathematical representation theory, two representations of a group on topological vector spaces are called Naimark equivalent (named after Mark Naimark) if there is a closed bijective linear map between dense subspaces preserving the group action.".
- Naimark_equivalence wikiPageID "34748221".
- Naimark_equivalence wikiPageLength "588".
- Naimark_equivalence wikiPageOutDegree "9".
- Naimark_equivalence wikiPageRevisionID "647540163".
- Naimark_equivalence wikiPageWikiLink Category:Representation_theory.
- Naimark_equivalence wikiPageWikiLink Dense_set.
- Naimark_equivalence wikiPageWikiLink Dense_subspace.
- Naimark_equivalence wikiPageWikiLink Group_(mathematics).
- Naimark_equivalence wikiPageWikiLink Group_action.
- Naimark_equivalence wikiPageWikiLink Group_representation.
- Naimark_equivalence wikiPageWikiLink Mark_Naimark.
- Naimark_equivalence wikiPageWikiLink Representation_theory.
- Naimark_equivalence wikiPageWikiLink Springer-Verlag.
- Naimark_equivalence wikiPageWikiLink Springer_Science+Business_Media.
- Naimark_equivalence wikiPageWikiLink Topological_vector_space.
- Naimark_equivalence wikiPageWikiLinkText "Naimark equivalence".
- Naimark_equivalence hasPhotoCollection Naimark_equivalence.
- Naimark_equivalence wikiPageUsesTemplate Template:Abstract-algebra-stub.
- Naimark_equivalence wikiPageUsesTemplate Template:Citation.
- Naimark_equivalence subject Category:Representation_theory.
- Naimark_equivalence hypernym Equivalent.
- Naimark_equivalence type Organisation.
- Naimark_equivalence type Field.
- Naimark_equivalence comment "In mathematical representation theory, two representations of a group on topological vector spaces are called Naimark equivalent (named after Mark Naimark) if there is a closed bijective linear map between dense subspaces preserving the group action.".
- Naimark_equivalence label "Naimark equivalence".
- Naimark_equivalence sameAs m.0j3f11m.
- Naimark_equivalence sameAs Naimarkekvivalens.
- Naimark_equivalence sameAs Q16899860.
- Naimark_equivalence sameAs Q16899860.
- Naimark_equivalence wasDerivedFrom Naimark_equivalence?oldid=647540163.
- Naimark_equivalence isPrimaryTopicOf Naimark_equivalence.