Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Moreaus_theorem> ?p ?o }
Showing triples 1 to 35 of
35
with 100 triples per page.
- Moreaus_theorem abstract "In mathematics, Moreau's theorem is a result in convex analysis. It shows that sufficiently well-behaved convex functionals on Hilbert spaces are differentiable and the derivative is well-approximated by the so-called Yosida approximation, which is defined in terms of the resolvent operator.".
- Moreaus_theorem wikiPageID "13215004".
- Moreaus_theorem wikiPageLength "2119".
- Moreaus_theorem wikiPageOutDegree "14".
- Moreaus_theorem wikiPageRevisionID "515029239".
- Moreaus_theorem wikiPageWikiLink Category:Convex_analysis.
- Moreaus_theorem wikiPageWikiLink Category:Theorems_in_functional_analysis.
- Moreaus_theorem wikiPageWikiLink Convex_analysis.
- Moreaus_theorem wikiPageWikiLink Convex_function.
- Moreaus_theorem wikiPageWikiLink Extended_real_number_line.
- Moreaus_theorem wikiPageWikiLink Fréchet_derivative.
- Moreaus_theorem wikiPageWikiLink Hilbert_space.
- Moreaus_theorem wikiPageWikiLink Mathematics.
- Moreaus_theorem wikiPageWikiLink Proper_function.
- Moreaus_theorem wikiPageWikiLink Proper_map.
- Moreaus_theorem wikiPageWikiLink Resolvent_formalism.
- Moreaus_theorem wikiPageWikiLink Resolvent_operator.
- Moreaus_theorem wikiPageWikiLink Semi-continuity.
- Moreaus_theorem wikiPageWikiLink Subderivative.
- Moreaus_theorem wikiPageWikiLink Well-behaved.
- Moreaus_theorem wikiPageWikiLink Yosida_approximation.
- Moreaus_theorem wikiPageWikiLinkText "Moreau's theorem".
- Moreaus_theorem hasPhotoCollection Moreaus_theorem.
- Moreaus_theorem wikiPageUsesTemplate Template:Cite_book.
- Moreaus_theorem wikiPageUsesTemplate Template:MathSciNet.
- Moreaus_theorem subject Category:Convex_analysis.
- Moreaus_theorem subject Category:Theorems_in_functional_analysis.
- Moreaus_theorem hypernym Result.
- Moreaus_theorem comment "In mathematics, Moreau's theorem is a result in convex analysis. It shows that sufficiently well-behaved convex functionals on Hilbert spaces are differentiable and the derivative is well-approximated by the so-called Yosida approximation, which is defined in terms of the resolvent operator.".
- Moreaus_theorem label "Moreau's theorem".
- Moreaus_theorem sameAs m.03bz2_5.
- Moreaus_theorem sameAs Q6911202.
- Moreaus_theorem sameAs Q6911202.
- Moreaus_theorem wasDerivedFrom Moreaus_theoremoldid=515029239.
- Moreaus_theorem isPrimaryTopicOf Moreaus_theorem.