Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Kostka_number> ?p ?o }
Showing triples 1 to 59 of
59
with 100 triples per page.
- Kostka_number abstract "In mathematics, the Kostka number Kλμ (depending on two integer partitions λ and μ) is a non-negative integer that is equal to the number of semistandard Young tableaux of shape λ and weight μ. They were introduced by the mathematician Carl Kostka in his study of symmetric functions (Kostka (1882)).For example, if λ = (3, 2) and μ = (1, 1, 2, 1), the Kostka number Kλμ counts the number of ways to fill a left-aligned collection of boxes with 3 in the first row and 2 in the second row with 1 copy of the number 1, 1 copy of the number 2, 2 copies of the number 3 and 1 copy of the number 4 such that the entries increase along columns and do not decrease along rows. The three such tableaux are shown at right, and K(3, 2) (1, 1, 2, 1) = 3.".
- Kostka_number thumbnail Semistandard_Young_tableaux_of_shape_(3,_2)_and_weight_(1,_1,_2,_1).png?width=300.
- Kostka_number wikiPageExternalLink ?IDDOC=259790.
- Kostka_number wikiPageExternalLink ?ci=9780198504504.
- Kostka_number wikiPageID "22606041".
- Kostka_number wikiPageLength "6186".
- Kostka_number wikiPageOutDegree "23".
- Kostka_number wikiPageRevisionID "678609031".
- Kostka_number wikiPageWikiLink Carl_Kostka.
- Kostka_number wikiPageWikiLink Category:Integer_sequences.
- Kostka_number wikiPageWikiLink Category:Symmetric_functions.
- Kostka_number wikiPageWikiLink Combinatorics.
- Kostka_number wikiPageWikiLink Crelles_Journal.
- Kostka_number wikiPageWikiLink Dominance_order.
- Kostka_number wikiPageWikiLink General_linear_group.
- Kostka_number wikiPageWikiLink Hook-length_formula.
- Kostka_number wikiPageWikiLink Irreducible_representation.
- Kostka_number wikiPageWikiLink Kostka_polynomial.
- Kostka_number wikiPageWikiLink Linear_combination.
- Kostka_number wikiPageWikiLink Mathematics.
- Kostka_number wikiPageWikiLink Natural_number.
- Kostka_number wikiPageWikiLink Non-negative_integer.
- Kostka_number wikiPageWikiLink Partition_(number_theory).
- Kostka_number wikiPageWikiLink Permutation_module.
- Kostka_number wikiPageWikiLink Representation_theory.
- Kostka_number wikiPageWikiLink Ring_of_symmetric_functions.
- Kostka_number wikiPageWikiLink Schur_polynomial.
- Kostka_number wikiPageWikiLink Semistandard_Young_tableaux.
- Kostka_number wikiPageWikiLink Weight_(representation_theory).
- Kostka_number wikiPageWikiLink Weight_space.
- Kostka_number wikiPageWikiLink Yamanouchi_tableau.
- Kostka_number wikiPageWikiLink Young_diagram.
- Kostka_number wikiPageWikiLink Young_tableau.
- Kostka_number wikiPageWikiLink File:Semistandard_Young_tableaux_of_shape_(3,_2)_and_weight_(1,_1,_2,_1).png.
- Kostka_number wikiPageWikiLinkText "Kostka number".
- Kostka_number authorlink "Bruce Sagan".
- Kostka_number first "Bruce E.".
- Kostka_number hasPhotoCollection Kostka_number.
- Kostka_number id "s/s120040".
- Kostka_number last "Sagan".
- Kostka_number title "Schur functions in algebraic combinatorics".
- Kostka_number wikiPageUsesTemplate Template:Citation.
- Kostka_number wikiPageUsesTemplate Template:Harvtxt.
- Kostka_number wikiPageUsesTemplate Template:Reflist.
- Kostka_number wikiPageUsesTemplate Template:Springer.
- Kostka_number subject Category:Integer_sequences.
- Kostka_number subject Category:Symmetric_functions.
- Kostka_number hypernym Integer.
- Kostka_number type Function.
- Kostka_number type Polynomial.
- Kostka_number comment "In mathematics, the Kostka number Kλμ (depending on two integer partitions λ and μ) is a non-negative integer that is equal to the number of semistandard Young tableaux of shape λ and weight μ.".
- Kostka_number label "Kostka number".
- Kostka_number sameAs Nombre_de_Kostka.
- Kostka_number sameAs m.05zmppq.
- Kostka_number sameAs Q6433560.
- Kostka_number sameAs Q6433560.
- Kostka_number wasDerivedFrom Kostka_number?oldid=678609031.
- Kostka_number depiction Semistandard_Young_tableaux_of_shape_(3,_2)_and_weight_(1,_1,_2,_1).png.
- Kostka_number isPrimaryTopicOf Kostka_number.