Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Jensens_covering_theorem> ?p ?o }
Showing triples 1 to 31 of
31
with 100 triples per page.
- Jensens_covering_theorem abstract "In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in (Devlin & Jensen 1975). Silver later gave a fine structure free proof using his machines and finally Magidor (1990) gave an even simpler proof.The converse of Jensen's covering theorem is also true: if 0# exists then the countable set of all cardinals less than ℵω cannot be covered by a constructible set of cardinality less than ℵω.In his book Proper Forcing, Shelah proved a strong form of Jensen's covering lemma.".
- Jensens_covering_theorem wikiPageExternalLink books?id=9UHU_bq-wc8C&dq=Marginalia+to+a+theorem+of+Silver.
- Jensens_covering_theorem wikiPageExternalLink u6g5311h23232h02.
- Jensens_covering_theorem wikiPageID "25646402".
- Jensens_covering_theorem wikiPageLength "2413".
- Jensens_covering_theorem wikiPageOutDegree "10".
- Jensens_covering_theorem wikiPageRevisionID "451291546".
- Jensens_covering_theorem wikiPageWikiLink Category:Set_theory.
- Jensens_covering_theorem wikiPageWikiLink Constructible_universe.
- Jensens_covering_theorem wikiPageWikiLink Jack_Silver.
- Jensens_covering_theorem wikiPageWikiLink Saharon_Shelah.
- Jensens_covering_theorem wikiPageWikiLink Set_theory.
- Jensens_covering_theorem wikiPageWikiLink Silver_machine.
- Jensens_covering_theorem wikiPageWikiLink Springer-Verlag.
- Jensens_covering_theorem wikiPageWikiLink Springer_Science+Business_Media.
- Jensens_covering_theorem wikiPageWikiLink Transactions_of_the_American_Mathematical_Society.
- Jensens_covering_theorem wikiPageWikiLink Zero_sharp.
- Jensens_covering_theorem wikiPageWikiLinkText "Jensen's covering theorem".
- Jensens_covering_theorem hasPhotoCollection Jensens_covering_theorem.
- Jensens_covering_theorem wikiPageUsesTemplate Template:Citation.
- Jensens_covering_theorem wikiPageUsesTemplate Template:Harv.
- Jensens_covering_theorem wikiPageUsesTemplate Template:Harvs.
- Jensens_covering_theorem wikiPageUsesTemplate Template:Mathlogic-stub.
- Jensens_covering_theorem subject Category:Set_theory.
- Jensens_covering_theorem comment "In set theory, Jensen's covering theorem states that if 0# does not exist then every uncountable set of ordinals is contained in a constructible set of the same cardinality. Informally this conclusion says that the constructible universe is close to the universe of all sets. The first proof appeared in (Devlin & Jensen 1975).".
- Jensens_covering_theorem label "Jensen's covering theorem".
- Jensens_covering_theorem sameAs m.09v6s05.
- Jensens_covering_theorem sameAs Q6179899.
- Jensens_covering_theorem sameAs Q6179899.
- Jensens_covering_theorem wasDerivedFrom Jensens_covering_theoremoldid=451291546.
- Jensens_covering_theorem isPrimaryTopicOf Jensens_covering_theorem.