Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Hyperspecial_subgroup> ?p ?o }
Showing triples 1 to 27 of
27
with 100 triples per page.
- Hyperspecial_subgroup abstract "In the theory of reductive groups over local fields, a hyperspecial subgroup of a reductive group G is a certain type of compact subgroup of G.In particular, let F be a nonarchimedean local field, O its ring of integers, k its residue field and G a reductive group over F. A subgroup K of G(F) is called hyperspecial if there exists a smooth group scheme Γ over O such thatΓF=G,Γk is a connected reductive group, andΓ(O)=K.The original definition of a hyperspecial subgroup (appearing in section 1.10.2 of ) was in terms of hyperspecial points in the Bruhat-Tits Building of G. The equivalent definition above is given in the same paper of Tits, section 3.8.1.Hyperspecial subgroups of G(F) exist if, and only if, G is unramified over F.An interesting property of hyperspecial subgroups, is that among all compact subgroups of G(F), the hyperspecial subgroups have maximum measure.".
- Hyperspecial_subgroup wikiPageID "8135721".
- Hyperspecial_subgroup wikiPageLength "1591".
- Hyperspecial_subgroup wikiPageOutDegree "6".
- Hyperspecial_subgroup wikiPageRevisionID "549879284".
- Hyperspecial_subgroup wikiPageWikiLink Bruhat-Tits_building.
- Hyperspecial_subgroup wikiPageWikiLink Building_(mathematics).
- Hyperspecial_subgroup wikiPageWikiLink Category:Algebraic_groups.
- Hyperspecial_subgroup wikiPageWikiLink Group_scheme.
- Hyperspecial_subgroup wikiPageWikiLink Local_field.
- Hyperspecial_subgroup wikiPageWikiLink Local_fields.
- Hyperspecial_subgroup wikiPageWikiLink Reductive_group.
- Hyperspecial_subgroup wikiPageWikiLinkText "Hyperspecial subgroup".
- Hyperspecial_subgroup wikiPageWikiLinkText "hyperspecial subgroup".
- Hyperspecial_subgroup hasPhotoCollection Hyperspecial_subgroup.
- Hyperspecial_subgroup subject Category:Algebraic_groups.
- Hyperspecial_subgroup hypernym Type.
- Hyperspecial_subgroup type Group.
- Hyperspecial_subgroup type Group.
- Hyperspecial_subgroup type Variety.
- Hyperspecial_subgroup comment "In the theory of reductive groups over local fields, a hyperspecial subgroup of a reductive group G is a certain type of compact subgroup of G.In particular, let F be a nonarchimedean local field, O its ring of integers, k its residue field and G a reductive group over F.".
- Hyperspecial_subgroup label "Hyperspecial subgroup".
- Hyperspecial_subgroup sameAs m.026sx4h.
- Hyperspecial_subgroup sameAs Q17028435.
- Hyperspecial_subgroup sameAs Q17028435.
- Hyperspecial_subgroup wasDerivedFrom Hyperspecial_subgroup?oldid=549879284.
- Hyperspecial_subgroup isPrimaryTopicOf Hyperspecial_subgroup.