Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Hilberts_irreducibility_theorem> ?p ?o }
Showing triples 1 to 40 of
40
with 100 triples per page.
- Hilberts_irreducibility_theorem abstract "In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert, states that every finite number of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.".
- Hilberts_irreducibility_theorem wikiPageID "1951153".
- Hilberts_irreducibility_theorem wikiPageLength "4401".
- Hilberts_irreducibility_theorem wikiPageOutDegree "19".
- Hilberts_irreducibility_theorem wikiPageRevisionID "657064530".
- Hilberts_irreducibility_theorem wikiPageWikiLink Absolutely_irreducible.
- Hilberts_irreducibility_theorem wikiPageWikiLink Algebra.
- Hilberts_irreducibility_theorem wikiPageWikiLink Algebraic_geometry.
- Hilberts_irreducibility_theorem wikiPageWikiLink Andrew_Wiles.
- Hilberts_irreducibility_theorem wikiPageWikiLink Category:Polynomials.
- Hilberts_irreducibility_theorem wikiPageWikiLink Category:Theorems_in_algebra.
- Hilberts_irreducibility_theorem wikiPageWikiLink Category:Theorems_in_number_theory.
- Hilberts_irreducibility_theorem wikiPageWikiLink David_Hilbert.
- Hilberts_irreducibility_theorem wikiPageWikiLink Fermats_Last_Theorem.
- Hilberts_irreducibility_theorem wikiPageWikiLink Fermats_last_theorem.
- Hilberts_irreducibility_theorem wikiPageWikiLink Global_field.
- Hilberts_irreducibility_theorem wikiPageWikiLink Hilbertian_field.
- Hilberts_irreducibility_theorem wikiPageWikiLink Inverse_Galois_problem.
- Hilberts_irreducibility_theorem wikiPageWikiLink Irreducible_polynomial.
- Hilberts_irreducibility_theorem wikiPageWikiLink Number_theory.
- Hilberts_irreducibility_theorem wikiPageWikiLink Rational_number.
- Hilberts_irreducibility_theorem wikiPageWikiLink Springer-Verlag.
- Hilberts_irreducibility_theorem wikiPageWikiLink Springer_Science+Business_Media.
- Hilberts_irreducibility_theorem wikiPageWikiLink Thin_set_(Serre).
- Hilberts_irreducibility_theorem wikiPageWikiLink Zariski_topology.
- Hilberts_irreducibility_theorem wikiPageWikiLinkText "Hilbert's irreducibility theorem".
- Hilberts_irreducibility_theorem hasPhotoCollection Hilberts_irreducibility_theorem.
- Hilberts_irreducibility_theorem wikiPageUsesTemplate Template:Cite_book.
- Hilberts_irreducibility_theorem wikiPageUsesTemplate Template:More_footnotes.
- Hilberts_irreducibility_theorem wikiPageUsesTemplate Template:Reflist.
- Hilberts_irreducibility_theorem subject Category:Polynomials.
- Hilberts_irreducibility_theorem subject Category:Theorems_in_algebra.
- Hilberts_irreducibility_theorem subject Category:Theorems_in_number_theory.
- Hilberts_irreducibility_theorem comment "In number theory, Hilbert's irreducibility theorem, conceived by David Hilbert, states that every finite number of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.".
- Hilberts_irreducibility_theorem label "Hilbert's irreducibility theorem".
- Hilberts_irreducibility_theorem sameAs m.068dwd.
- Hilberts_irreducibility_theorem sameAs Q5761142.
- Hilberts_irreducibility_theorem sameAs Q5761142.
- Hilberts_irreducibility_theorem wasDerivedFrom Hilberts_irreducibility_theoremoldid=657064530.
- Hilberts_irreducibility_theorem isPrimaryTopicOf Hilberts_irreducibility_theorem.