Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Hall–Littlewood_polynomials> ?p ?o }
Showing triples 1 to 38 of
38
with 100 triples per page.
- Hall–Littlewood_polynomials abstract "In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials.They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Littlewood (1961).".
- Hall–Littlewood_polynomials wikiPageID "18832302".
- Hall–Littlewood_polynomials wikiPageLength "2751".
- Hall–Littlewood_polynomials wikiPageOutDegree "14".
- Hall–Littlewood_polynomials wikiPageRevisionID "666226689".
- Hall–Littlewood_polynomials wikiPageWikiLink Category:Algebraic_combinatorics.
- Hall–Littlewood_polynomials wikiPageWikiLink Category:Orthogonal_polynomials.
- Hall–Littlewood_polynomials wikiPageWikiLink Category:Symmetric_functions.
- Hall–Littlewood_polynomials wikiPageWikiLink Hall_algebra.
- Hall–Littlewood_polynomials wikiPageWikiLink Hall_polynomial.
- Hall–Littlewood_polynomials wikiPageWikiLink Kostka_polynomial.
- Hall–Littlewood_polynomials wikiPageWikiLink Macdonald_polynomial.
- Hall–Littlewood_polynomials wikiPageWikiLink Macdonald_polynomials.
- Hall–Littlewood_polynomials wikiPageWikiLink Mathematics.
- Hall–Littlewood_polynomials wikiPageWikiLink Partition_(number_theory).
- Hall–Littlewood_polynomials wikiPageWikiLink Philip_Hall.
- Hall–Littlewood_polynomials wikiPageWikiLink Schur_polynomial.
- Hall–Littlewood_polynomials wikiPageWikiLink Schur_polynomials.
- Hall–Littlewood_polynomials wikiPageWikiLink Symmetric_function.
- Hall–Littlewood_polynomials wikiPageWikiLink Symmetric_group.
- Hall–Littlewood_polynomials wikiPageWikiLinkText "Hall–Littlewood polynomials".
- Hall–Littlewood_polynomials hasPhotoCollection Hall–Littlewood_polynomials.
- Hall–Littlewood_polynomials title "Hall-Littlewood Polynomial".
- Hall–Littlewood_polynomials urlname "Hall-LittlewoodPolynomial".
- Hall–Littlewood_polynomials wikiPageUsesTemplate Template:Cite_book.
- Hall–Littlewood_polynomials wikiPageUsesTemplate Template:Cite_journal.
- Hall–Littlewood_polynomials wikiPageUsesTemplate Template:Harvtxt.
- Hall–Littlewood_polynomials wikiPageUsesTemplate Template:MathWorld.
- Hall–Littlewood_polynomials subject Category:Algebraic_combinatorics.
- Hall–Littlewood_polynomials subject Category:Orthogonal_polynomials.
- Hall–Littlewood_polynomials subject Category:Symmetric_functions.
- Hall–Littlewood_polynomials comment "In mathematics, the Hall–Littlewood polynomials are symmetric functions depending on a parameter t and a partition λ. They are Schur functions when t is 0 and monomial symmetric functions when t is 1 and are special cases of Macdonald polynomials.They were first defined indirectly by Philip Hall using the Hall algebra, and later defined directly by Littlewood (1961).".
- Hall–Littlewood_polynomials label "Hall–Littlewood polynomials".
- Hall–Littlewood_polynomials sameAs m.04gnplt.
- Hall–Littlewood_polynomials sameAs Q5643248.
- Hall–Littlewood_polynomials sameAs Q5643248.
- Hall–Littlewood_polynomials wasDerivedFrom Hall–Littlewood_polynomials?oldid=666226689.
- Hall–Littlewood_polynomials isPrimaryTopicOf Hall–Littlewood_polynomials.