Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Fraxc3xafssxc3xa9s_theorem> ?p ?o }
Showing triples 1 to 32 of
32
with 100 triples per page.
- Fraxc3xafssxc3xa9s_theorem abstract "In mathematics, Fraïssé's theorem, named after Roland Fraïssé, states that a class K of finite relational structures is the age of a countable homogeneous relational structure if and only if it satisfies the following four conditions: K is closed under isomorphism; K is closed under taking induced substructures; K has only countably many members up to isomorphism; K has the amalgamation property.If these conditions hold, then the countable homogeneous structure whose age is K is unique up to isomorphism.Fraïssé proved the theorem in the 1950s.".
- Fraxc3xafssxc3xa9s_theorem wikiPageID "34824761".
- Fraxc3xafssxc3xa9s_theorem wikiPageLength "1158".
- Fraxc3xafssxc3xa9s_theorem wikiPageOutDegree "11".
- Fraxc3xafssxc3xa9s_theorem wikiPageRevisionID "569388254".
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Age_(model_theory).
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Amalgamation_property.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Category:Mathematical_structures.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Category:Mathematical_theorems.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Category:Model_theory.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Category:Universal_algebra.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Class_(set_theory).
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Countable_set.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Isomorphism.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Relational_structure.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Roland_Fraïssé.
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLink Structure_(mathematical_logic).
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLinkText "Fraïssé%27s theorem".
- Fraxc3xafssxc3xa9s_theorem wikiPageWikiLinkText "Fraïssé's theorem".
- Fraxc3xafssxc3xa9s_theorem hasPhotoCollection Fraxc3xafssxc3xa9s_theorem.
- Fraxc3xafssxc3xa9s_theorem wikiPageUsesTemplate Template:Reflist.
- Fraxc3xafssxc3xa9s_theorem subject Category:Mathematical_structures.
- Fraxc3xafssxc3xa9s_theorem subject Category:Mathematical_theorems.
- Fraxc3xafssxc3xa9s_theorem subject Category:Model_theory.
- Fraxc3xafssxc3xa9s_theorem subject Category:Universal_algebra.
- Fraxc3xafssxc3xa9s_theorem comment "In mathematics, Fraïssé's theorem, named after Roland Fraïssé, states that a class K of finite relational structures is the age of a countable homogeneous relational structure if and only if it satisfies the following four conditions: K is closed under isomorphism; K is closed under taking induced substructures; K has only countably many members up to isomorphism; K has the amalgamation property.If these conditions hold, then the countable homogeneous structure whose age is K is unique up to isomorphism.Fraïssé proved the theorem in the 1950s.".
- Fraxc3xafssxc3xa9s_theorem label "Fraïssé's theorem".
- Fraxc3xafssxc3xa9s_theorem sameAs m.0j3cdcz.
- Fraxc3xafssxc3xa9s_theorem sameAs Q5494135.
- Fraxc3xafssxc3xa9s_theorem sameAs Q5494135.
- Fraxc3xafssxc3xa9s_theorem wasDerivedFrom Fraxc3xafssxc3xa9s_theoremoldid=569388254.
- Fraxc3xafssxc3xa9s_theorem isPrimaryTopicOf Fraxc3xafssxc3xa9s_theorem.