Matches in DBpedia 2015-10 for { <http://dbpedia.org/resource/Dold_manifold> ?p ?o }
Showing triples 1 to 29 of
29
with 100 triples per page.
- Dold_manifold abstract "In mathematics, a Dold manifold is one of the manifolds P(m,n) = (Sm×CPn)/τ (where τ acts as −1 on the sphere Sm and a complex conjugation on complex projective space CPn) constructed by Dold (1956) that he used to give explicit generators for Thom's unoriented cobordism ring.".
- Dold_manifold wikiPageID "31337422".
- Dold_manifold wikiPageLength "746".
- Dold_manifold wikiPageOutDegree "6".
- Dold_manifold wikiPageRevisionID "446774833".
- Dold_manifold wikiPageWikiLink Category:Algebraic_topology.
- Dold_manifold wikiPageWikiLink Category:Manifolds.
- Dold_manifold wikiPageWikiLink Complex_conjugate.
- Dold_manifold wikiPageWikiLink Complex_conjugation.
- Dold_manifold wikiPageWikiLink Complex_projective_space.
- Dold_manifold wikiPageWikiLink List_of_cohomology_theories.
- Dold_manifold wikiPageWikiLink Mathematische_Zeitschrift.
- Dold_manifold wikiPageWikiLink Unoriented_cobordism_ring.
- Dold_manifold wikiPageWikiLinkText "Dold manifold".
- Dold_manifold hasPhotoCollection Dold_manifold.
- Dold_manifold wikiPageUsesTemplate Template:Citation.
- Dold_manifold wikiPageUsesTemplate Template:Harvs.
- Dold_manifold subject Category:Algebraic_topology.
- Dold_manifold subject Category:Manifolds.
- Dold_manifold hypernym P.
- Dold_manifold type Album.
- Dold_manifold type Space.
- Dold_manifold comment "In mathematics, a Dold manifold is one of the manifolds P(m,n) = (Sm×CPn)/τ (where τ acts as −1 on the sphere Sm and a complex conjugation on complex projective space CPn) constructed by Dold (1956) that he used to give explicit generators for Thom's unoriented cobordism ring.".
- Dold_manifold label "Dold manifold".
- Dold_manifold sameAs m.0gjdt0g.
- Dold_manifold sameAs Q5288906.
- Dold_manifold sameAs Q5288906.
- Dold_manifold wasDerivedFrom Dold_manifold?oldid=446774833.
- Dold_manifold isPrimaryTopicOf Dold_manifold.